.已知直線經(jīng)過橢圓的左頂點A和上頂點D,橢圓C的右頂點為B,點P是橢圓C上位于軸上方的動點,直線AP,BP與直線分別交于M,N兩點.
(1)求橢圓C的方程;
(2)求線段MN的長度的最小值;
(3)當線段MN的長度最小時,Q點在橢圓上運動,記△BPQ的面積為S,當S在上變化時,討論S的大小與Q點的個數(shù)之間的關系.
解:
(1)由已知得橢圓C的左頂點為,上頂點為D(0,2),∴,故橢圓C的方程為.                                    
(2)直線的斜率顯然存在,且,故可設直線AP的方程為,從而
,設,則,∴直線的方程為:,得

當且僅當時等號成立
時,線段MN的長度取最小值3.               
(3)由(2)知,當線段MN的長度取最小值時,,此時直線BP的方程為
設與BP平行的直線
聯(lián)立
由△=
時,BP與的距離為,此時S△BPQ
時,BP與的距離為,此時S△BPQ
∴當時,這樣的Q點有4個
時,這樣的Q點有3個
時,這樣的Q點有2個
時,這樣的Q點有1個
時,這樣的Q點不存在.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設F(1,0),點M在x軸上,點P在y軸上,且
(1)當點P在y軸上運動時,求點N的軌跡C的方程;
(2)設是曲線C上的點,且成等差數(shù)列,當AD的垂直平分線與x軸交于點E(3,0)時,求點B的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正四面體P-ABC中,M為ABC內(含邊界)一動點,且到三個側面PAB,PBC,PCA的距離成等差數(shù)列,則點M的軌跡是(  )
A.一條線段B.橢圓的一部分
C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點到雙曲線的漸近線的距離為(   )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

△ABC中,A(-2,0),B(2,0),則滿足△ABC的周長為8的點C的軌跡方程為
_______。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.已知點P在曲線C1上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則 | PQ |-| PR | 的最大值是
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)如圖,在中,點的坐標為,點軸上,點軸的正半軸上,,在的延長線上取一點,使.
(Ⅰ)當點軸上移動時,求動點的軌跡;
(Ⅱ)自點引直線與軌跡交于不同的兩點、,點關于軸的對稱點
記為,設,點的坐標為.
(1)求證:;
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)分別以雙曲線的焦點為頂點,以雙曲線G的頂點為焦點作橢圓C。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點P的坐標為,在y軸上是否存在定點M,過點M且斜率為k的動直線 交橢圓于A、B兩點,使以AB為直徑的圓恒過點P,若存在,求出M的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a、b、c分別為雙曲線的實半軸長、虛半軸長、半焦距,且方程無實根,則雙曲線離心率的取值范圍是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案