與向量
a
=(1,2,3),
b
=(3,1,2)都垂直的向量為( 。
A、(1,7,5)
B、(1,-7,5)
C、(-1,-7,5)
D、(1,-7,-5)
考點(diǎn):向量的數(shù)量積判斷向量的共線與垂直
專題:空間向量及應(yīng)用
分析:直接利用空間向量的數(shù)量積為0,判斷空間向量垂直,得到選項(xiàng)即可.
解答: 解:由題意可知:(-1,-7,5)•(1,2,3)=0,
(3,1,2)•(-1,-7,5)=0.
所以與向量
a
=(1,2,3),
b
=(3,1,2)都垂直的向量為(-1,-7,5).
故選:C.
點(diǎn)評(píng):本題考查空間向量的數(shù)量積的應(yīng)用,空間向量的垂直體積的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的左右焦點(diǎn)為F1,F(xiàn)2,其中一條漸近線為y=
3
x,點(diǎn)A在雙曲線C上,若|F1A|=2|F2A|,則cos∠AF2F1=(  )
A、
1
4
B、
1
3
C、
2
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d<0,設(shè)bn=(
1
2
 an,又已知b1+b2+b3=
21
8
,b1•b2•b3=
1
8

(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求等差數(shù)列{an}的通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD,PA⊥底面ABCD,底面四邊形ABCD是正方形,PA=AB=a 其頂點(diǎn)都在一個(gè)球面上,且該球的體積是4
3
π,則a等于( 。
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)θ為兩個(gè)非零向量
a
b
的夾角,已知對(duì)任意實(shí)數(shù)t,|
b
-t
a
|
的最小值是2,則( 。
A、若θ確定,則|
a
|
唯一確定
B、若θ確定,則|
b
|
唯一確定
C、若|
a
|
確定,則θ唯一確定
D、若|
b
|
確定,則θ唯一確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+xlog26+log23=0的兩根為α,β,則(
1
4
)
α
(
1
4
)
β
=(  )
A、
1
36
B、36
C、-6
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
-
1
2x+1
,求證:函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
24
+
y2
12
=1,設(shè)R(x0,y0)是橢圓C上的任一點(diǎn),從原點(diǎn)O向圓R:(x-x02+(y-y02=8作兩條切線,分別交橢圓于點(diǎn)P,Q.
(1)若直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1,k2,求證:2k1k2+1=0;
(3)試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的T=( 。
A、29B、44C、52D、62

查看答案和解析>>

同步練習(xí)冊(cè)答案