已知集合M={-1,0,1},N={x|0≤log2x≤1,x∈Z},則M∩N=(  )
A、{0,1}B、{-1,0}
C、{0}D、{1}
考點:交集及其運算
專題:集合
分析:利用交集的性質(zhì)和對數(shù)函數(shù)的性質(zhì)求解.
解答: 解:∵集合M={-1,0,1},N={x|0≤log2x≤1,x∈Z}={1,2},
∴M∩N={1}.
故選:D.
點評:本題考查交集的求法,是基礎(chǔ)題,解題時要注意對數(shù)函數(shù)的性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知兩個向量
a
=(t,
x
),
b
=(x+1,
u
2
),其中t,u都是正實數(shù),且
a
=2
b
,則
t
u
的取值范圍是(  )
A、[1,6]
B、[-6,1]
C、[4,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lg(x-5)的定義域為M,函數(shù)y=lg(x-5)+lg(12-x)的定義域為N,則(  )
A、M∪N=RB、M=N
C、M?ND、M⊆N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把下面求2-22+23-24+…-210的程序語言補充完整.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈(0,+∞),x+
4
x
≥4”的否定為( 。
A、?x∈(0,+∞),x+
4
x
≤4
B、?x∈(0,+∞),x+
4
x
<4
C、?x∈(0,+∞),x+
4
x
≤4
D、?x∈(0,+∞),x+
4
x
<4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(已知下面式中字母都是正數(shù)
(1)化簡:(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
2
b
5
6
);
(2)用logax,logay,logaz表示:lg
x
y2z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O為AD中點,M是棱PC上的點,AD=2BC.
(1)求證:平面POB⊥平面PAD;
(2)若點M是棱PC的中點,求證:PA∥平面BMO.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱中A1B1C1D1-ABCD,底面ABCD為邊長為2的菱形,側(cè)棱長為3,且∠B1BA=∠B1BC=∠ABC=60°.
(1)求證:AC⊥平面B1BDD1
(2)求BC1與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
cx+1,0<x<c
2-
x
c2
+1,c≤x<1
,滿足f(
c
2
)=
9
8

(1)求常數(shù)c的值;
(2)解關(guān)于x的不等式f(x)>
2
8
+1.

查看答案和解析>>

同步練習冊答案