命題“?x∈(0,+∞),x+
4
x
≥4”的否定為( 。
A、?x∈(0,+∞),x+
4
x
≤4
B、?x∈(0,+∞),x+
4
x
<4
C、?x∈(0,+∞),x+
4
x
≤4
D、?x∈(0,+∞),x+
4
x
<4
考點:命題的否定
專題:簡易邏輯
分析:直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.
解答: 解:因為全稱命題的否定是特稱命題,所以命題“?x∈(0,+∞),x+
4
x
≥4”的否定為:?x∈(0,+∞),x+
4
x
<4.
故選:B.
點評:本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)(x∈D)的圖象只能是下列圖形中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足方程|z+
2
1+i
|=4,那么復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點P組成的圖形為(  )
A、以(1,-1)為圓心,以4為半徑的圓
B、以(1,-1)為圓心,以2為半徑的圓
C、以(-1,1)為圓心,以4為半徑的圓
D、以(-1,1)為圓心,以2為半徑的圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-2,0,2},B={x|x2-x-2=0},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1-x2
2x2-x+1
+x0的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={-1,0,1},N={x|0≤log2x≤1,x∈Z},則M∩N=( 。
A、{0,1}B、{-1,0}
C、{0}D、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,
(Ⅰ)已知曲線C1的極坐標(biāo)方程為ρ=6cosθ,將曲線C1的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若在平面直角坐標(biāo)系xoy中,曲線C2的參數(shù)方程為
x=acosϕ
y=bsinϕ
(a>b>0,φ為參數(shù)).
已知曲線C2上的點M(1,
3
2
)及對應(yīng)的參數(shù)ϕ=
π
3
.求曲線C2的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C1體積為
9
4
,底面是邊長為
3
,若P為底面ABC的中心,則PA1與平面A1B1C1所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠2013年、2014年某產(chǎn)品的生產(chǎn)量分別為1000件、1050件,由于技術(shù)條件的改進,該產(chǎn)品的年產(chǎn)量逐年遞增.若用函數(shù)f(x)=a•bx+c(b>0,且b≠1)模擬該產(chǎn)品的年生產(chǎn)量f(x)與年份x(x∈N*)的關(guān)系,設(shè)2013年為第一年即x=1.
(1)若b=
1
2
,試求函數(shù)f(x)的解析式;
(2)若b>1,由于生產(chǎn)規(guī)模的限制,估計2015年該產(chǎn)品的生產(chǎn)量不會突破1200件(即生產(chǎn)量≤1200件),試依此估計求出a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案