7.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,等邊三角形PF1F2與雙曲線交于M,N兩點(diǎn),若M,N分別為線段PF1,PF2的中點(diǎn),則該雙曲線的離心率為$\sqrt{3}+1$.

分析 由題意,|MF2|=$\sqrt{3}$c,|MF1|=c,由雙曲線的定義可得$\sqrt{3}$c-c=2a,即可求出雙曲線的離心率.

解答 解:由題意,|MF2|=$\sqrt{3}$c,|MF1|=c,
∴由雙曲線的定義可得$\sqrt{3}$c-c=2a,
∴e=$\frac{c}{a}$=$\sqrt{3}+1$.
故答案為:$\sqrt{3}+1$.

點(diǎn)評(píng) 本題考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,正確運(yùn)用雙曲線的定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知Anm=272,Cnm=136,則m+n=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知acosBcosC+bcosAcosC=$\frac{c}{2}$.
(1)求角C;
(2)若c=$\sqrt{7}$,a+b=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)a=1.60.3,b=log2$\frac{1}{9}$,c=0.81.6,則a,b,c的大小關(guān)系是a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.將三項(xiàng)式(x2+x+1)n展開(kāi),當(dāng)n=1,2,3,…時(shí),得到如下左圖所示的展開(kāi)式,如圖所示的廣義楊輝三角形:(x2+x+1)0=1第0行                                                              1
(x2+x+1)1=x2+x+1第1行                                                     1 1 1
(x2+x+1)2=x4+2x3+3x2+2x+1第2行                                     1 2 3 2 1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1第3行                          1 3 6 7 6 3 1
(x2+x+1)4=x8+4x7+10x6+16x5+19x4+16x3+10x2+4x+1第4行   1 4 10 16 19 16 10 4 1

觀察多項(xiàng)式系數(shù)之間的關(guān)系,可以仿照楊輝三角構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法:第0行為1,以下各行每個(gè)數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計(jì)為0)之和,第k行共有2k+1個(gè)數(shù).若在(1+ax)(x2+x+1)5的展開(kāi)式中,x8項(xiàng)的系數(shù)為75,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在斜三棱柱ABC-A1B1C1中,點(diǎn)O、E分別是A1C1、AA1的中點(diǎn),AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)證明:OE∥平面AB1C1;
(2)證明:AB1⊥A1C;
(3)求A1C1與平面AA1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱A1B1,B1C1的中點(diǎn),O是AC與BD的交點(diǎn),面OEF與面BCC1B1相交于m,面OD1E與面BCC1B1相交于n,則直線m,n的夾角為(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.(x2+3x+2)5的展開(kāi)式中x的系數(shù)是240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=(x-a)2+4ln(x+1)的圖象在點(diǎn)(1,f(1))處的切線與y軸垂直.
(1)求實(shí)數(shù)a的值;             
(2)求出f(x)的所有極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案