11.${C}_{4}^{1}$+${C}_{4}^{2}$+${C}_{4}^{3}$+${C}_{4}^{4}$=15.

分析 根據(jù)組合數(shù)的性質(zhì)${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$=2n,進行解答即可.

解答 解:${C}_{4}^{1}$+${C}_{4}^{2}$+${C}_{4}^{3}$+${C}_{4}^{4}$
=(${C}_{4}^{0}$+${C}_{4}^{1}$+${C}_{4}^{2}$+${C}_{4}^{3}$+${C}_{4}^{4}$)-${C}_{4}^{0}$
=24-1
=15.
故答案為:15.

點評 本題考查了組合數(shù)的定義與性質(zhì)的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.在平面直角坐標系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$(l為參數(shù)),直線l與拋物線y2=4x相交于A,B兩點.則線段AB的長為4$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.參數(shù)方程$\left\{\begin{array}{l}{x=cosθ(sinθ+cosθ)}\\{y=sinθ(sinθ+cosθ)}\end{array}\right.$ (θ為參數(shù))表示什么曲線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.m為整數(shù),關于x的不等式|2x-m|≤1的整數(shù)解有且僅有一個值為3.
(1)求整數(shù)m的值;
(2)對滿足已知不等式的x,證明:$\sqrt{2x+m}$-$\sqrt{x-1}$>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若(1-2x)6=a0+a1x+a2x+…+a6x6,則|a0|+|a1|+|a2|+…+|a6|的值為( 。
A.1B.26C.35D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.A處存放電線桿40根,從與A相距1000米的B處起,沿AB方向每隔50米架設一根電線桿,一輛車一次能運4根,全部運完返回A處后,這輛車所運行的全部路程是多少千米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在數(shù)列{an}中,已知an=$\frac{n}{n+1}$,則{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,若sinAcosB=1一cosAsinB,則這個三角形是直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設實數(shù)a<0,定義域為R的函數(shù)$f(x)=a{cos^2}x-bsinxcosx-\frac{a}{2}$的最大值是$\frac{1}{2}$,且$f(\frac{π}{3})=\frac{{\sqrt{3}}}{4}$,
(1)求a、b的值;
(2)求函數(shù)f(x)在$x∈[\frac{π}{4},\frac{3π}{4}]$上的最值.

查看答案和解析>>

同步練習冊答案