5.隨機(jī)擲一枚均勻的正方體骰子(正方體骰子的六個(gè)面上的點(diǎn)數(shù)分別為1,2,3,4,5,6),每次實(shí)驗(yàn)擲三次,則每次實(shí)驗(yàn)中擲三次骰子的點(diǎn)數(shù)之和為6的概率為( 。
A.$\frac{5}{36}$B.$\frac{21}{216}$C.$\frac{5}{108}$D.$\frac{1}{16}$

分析 求出隨機(jī)擲一枚均勻的正方體骰子,每次實(shí)驗(yàn)擲三次的基本事件數(shù),再求出每次實(shí)驗(yàn)擲三次骰子的點(diǎn)數(shù)之和為6的基本事件數(shù),計(jì)算對(duì)應(yīng)的概率值.

解答 解:根據(jù)題意,隨機(jī)擲一枚均勻的正方體骰子,每次實(shí)驗(yàn)擲三次,共有6×6×6=216種不同的結(jié)果;
其中每次實(shí)驗(yàn)擲三次骰子的點(diǎn)數(shù)之和為6的基本事件包括1、2、3組成的數(shù)字共有${A}_{3}^{3}$種不同的結(jié)果,
由1、1、4組成的數(shù)據(jù)為${A}_{3}^{1}$種不同的結(jié)果,由2、2、2組成的數(shù)據(jù)有1種結(jié)果;
故所求的概率為P=$\frac{{A}_{3}^{3}{+A}_{3}^{1}+1}{216}$=$\frac{5}{108}$.
故選:C.

點(diǎn)評(píng) 本題考查了古典概型的概率計(jì)算問(wèn)題,解題的關(guān)鍵是計(jì)算對(duì)應(yīng)的基本事件數(shù),是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,$\overrightarrow{AB}$=(2,2),$\overrightarrow{AC}$=(1,k),若∠B=90°,則k值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在數(shù)列{an}中,a1=1,an+1=an+$\frac{1}{{2}^{n}}$,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.定積分${∫}_{-2}^{-1}$$\sqrt{-3-4x-{x}^{2}}$dx=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一信號(hào)燈閃爍時(shí)每次等可能的出現(xiàn)紅色或綠色信號(hào),在該信號(hào)燈閃爍三次中,已知有一次是綠色信號(hào),則至少有一次是紅色信號(hào)的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,若b2+c2=2bcsinAtanB+a2,則這個(gè)三角形的形狀是( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)fk(x)=ax-(k-1)a-x(k∈Z,a>0,a≠1,x∈R),g(x)=$\frac{{f}_{2}(x)}{{f}_{0}(x)}$.
(1)若a>1時(shí),判斷并證明函數(shù)y=g(x)的單調(diào)性;
(2)若y=f1(x)在[1,2]上的最大值比最小大2,證明函數(shù)y=g(x)的奇函數(shù);
(3)在(2)條件下,函數(shù)y=f0(2x)+2mf2(x)在x∈[1,+∞)有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2-ln$\frac{1}{x}$.
(1)求函數(shù)f(x)在[$\frac{1}{e}$,e2]上的最大值和最小值;
(2)證明:當(dāng)x∈(1,+∞)時(shí),函數(shù)g(x)=$\frac{2}{3}$x3+$\frac{1}{2}$x2的圖象在y=f(x)的圖象上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給出下列4個(gè)命題:
①在△ABC中,“cosA+sinA=cosB+sinB”是“A=B”的充要條件;
②b2=ac是a,b,c成等比數(shù)列的充要條件;
③若loga2<logb2<0,則a>b;
④若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈($\frac{π}{4}$,$\frac{π}{2}$),則f(sinθ)>f(cosθ);  
其中真命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案