15.若cosx=2m-1,且x∈R,則m的取值范圍是( 。
A.(-∞,1]B.[0,+∞)C.[-1,0]D.[0,1]

分析 根據(jù)余弦函數(shù)的有界性,列出不等式|2m-1|≤1,解不等式即可.

解答 解:∵cosx=2m-1,x∈R,
∴|2m-1|≤1,
即-1≤2m-1≤1,
解得0≤m≤1;
∴m的取值范圍是[0,1].
故選:D.

點(diǎn)評(píng) 本題考查了余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了不等式的簡單應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且acosC+$\frac{{\sqrt{3}}}{2}$c=b.
(Ⅰ)求角A;
(Ⅱ)若a=l,求$\sqrt{3}$c-2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知sinα=-$\frac{2}{3}$,α∈($\frac{3π}{2}$,2π)cosβ=-$\frac{5}{13}$,β是第三象限角,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.點(diǎn)P在圓x2+y2-8x-4y+16=0上,點(diǎn)Q在圓x2+y2+4x+2y-11=0上,則|PQ|的最小值為3$\sqrt{5}$-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計(jì)算${∫}_{\frac{π}{4}}^{\frac{π}{2}}$cos(2x-$\frac{π}{2}$)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知α∈(0,$\frac{π}{4}$),β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$.
(1)求tanα;
(2)求2α-β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=cos($\frac{π}{2}$-x)cosx+sin2(π-x)-$\frac{1}{2}$
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,a=2,且f($\frac{A}{2}$)=-$\frac{1}{10}$,則當(dāng)△ABC的周長取最大值時(shí),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=(x-a)(x+2)為偶函數(shù),若g(x)=$\left\{\begin{array}{l}{log_a}(x+1),x>-1\\{a^x},x≤-1\end{array}$,則a=2,g[g(-$\frac{3}{4}$)]=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.解不等式:$\frac{(x-1)(x+2)}{(x-1)(x+3)}$>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案