5.已知在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且acosC+$\frac{{\sqrt{3}}}{2}$c=b.
(Ⅰ)求角A;
(Ⅱ)若a=l,求$\sqrt{3}$c-2b的取值范圍.

分析 (I)使用正弦定理邊化角,利用和角的正弦函數(shù)得出cosA;
(II)使用正弦定理用B表示出b,c,得出$\sqrt{3}$c-2b關(guān)于B的函數(shù),根據(jù)B的范圍和余弦函數(shù)的性質(zhì)求出最值.

解答 解:(I)在△ABC中,∵acosC+$\frac{{\sqrt{3}}}{2}$c=b,∴sinAcosC+$\frac{\sqrt{3}}{2}$sinC=sinB,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴cosA=$\frac{\sqrt{3}}{2}$,∴A=$\frac{π}{6}$.
(II)由正弦定理得$\frac{sinB}=\frac{c}{sinC}=\frac{a}{sinA}=2$,
∴b=2sinB,c=2sinC=2sin($\frac{5π}{6}$-B)=cosB+$\sqrt{3}$sinB.
∴$\sqrt{3}$c-2b=$\sqrt{3}$cosB+3sinB-4sinB=$\sqrt{3}$cosB-sinB=2cos(B+$\frac{π}{6}$).
∵0$<B<\frac{5π}{6}$,∴$\frac{π}{6}<B+\frac{π}{6}<$π.
∴-1<cos(B+$\frac{π}{6}$)<$\frac{\sqrt{3}}{2}$,∴-2<2cos(B+$\frac{π}{6}$)<$\sqrt{3}$.
即$\sqrt{3}$c-2b的取值范圍是(-2,$\sqrt{3}$).

點評 本題考查了正弦定理的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知定義在R上的函數(shù)f(x)=2x-a•2-x為奇函數(shù).
(1)求a的值,并判斷f(x)的單調(diào)性(不用給證明);
(2)t為實數(shù),且f(x-t)+f(x2-t2)≥0對一切實數(shù)x都成立,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.平行直線2x-y=0和4x-2y+1=0之間的距離是$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不計算,判斷定積分的正負(fù):${∫}_{-\frac{π}{2}}^{0}$sinxdx是負(fù)數(shù)(填“正”或“負(fù)”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若n∈N*,二項式($\frac{1}{{x}^{2}}$-2x)n的展開式中的第7項是常數(shù)項,則n=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sin(α+β)=-$\frac{3}{5}$,cos(α-β)=-$\frac{4}{5}$,$\frac{π}{2}$<α-β<π,$\frac{3π}{2}$<α+β<2π,求2β的值.(提示:2β=(α+β)-(α-β))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.方程 $\frac{{x}^{2}}{m}$+y2=1表示焦點在x軸上的橢圓,則m的取值范圍為( 。
A.(1,+∞)B.($\frac{1}{2}$,+∞)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)k是給定的正整數(shù),對于滿足條件a1-a${\;}_{k+1}^{2}$=2的所有無窮等差數(shù)列{an},ak+1+ak+2+…+a2k+1的最大值$\frac{k+1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cosx=2m-1,且x∈R,則m的取值范圍是(  )
A.(-∞,1]B.[0,+∞)C.[-1,0]D.[0,1]

查看答案和解析>>

同步練習(xí)冊答案