分析 (1)把要求得不等式去掉絕對值,化為與之等價的3個不等式組,求得每個不等式組的解集,再取并集,即得所求.
(2)由條件可得存在實(shí)數(shù)k,使得$\frac{1}{x-y}$+$\frac{1}{y-z}$≥$\frac{k}{x-z}$,利用基本不等式從而證得結(jié)論,可得k的最大值為4.
解答 解:(1)由不等式|2x-1|-|x+1|<2,可得$\left\{\begin{array}{l}{x<-1}\\{1-2x-(-x-1)<2}\end{array}\right.$①,或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{1-2x-(x+1)<2}\end{array}\right.$②,
或$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{2x-1-(x+1)<2}\end{array}\right.$ ③.
解①求的x∈∅,解②求得-$\frac{2}{3}$<x≤$\frac{1}{2}$,解③求得$\frac{1}{2}$<x<4,
綜上可得,-$\frac{2}{3}$<x<4.
再根據(jù)不等式的解集為{x|a<x<b},可得a=-$\frac{2}{3}$,b=4.
(2)由題意,$-\frac{3a}{{2({x-y})}}+\frac{{4({y-z})}}≥\frac{k}{x-z}$恒成立,即存在實(shí)數(shù)k,使得$\frac{1}{x-y}$+$\frac{1}{y-z}$≥$\frac{k}{x-z}$
∵x>y>z,∴x-y>0,y-z>0,x-z>0,
∴[(x-y)+(y-z)]($\frac{1}{x-y}$+$\frac{1}{y-z}$)=2+$\frac{y-z}{x-y}$+$\frac{x-y}{y-z}$≥4,當(dāng)且僅當(dāng)$\frac{y-z}{x-y}$=$\frac{x-y}{y-z}$時取等號,即$\frac{1}{x-y}$+$\frac{1}{y-z}$≥$\frac{4}{x-z}$
故存在實(shí)數(shù)k≤4,使$-\frac{3a}{{2({x-y})}}+\frac{{4({y-z})}}≥\frac{k}{x-z}$恒成立,k的最大值為4.
點(diǎn)評 本題主要考查絕對值不等式的解法,不等式的性質(zhì)應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{3}$,$\frac{5π}{6}$) | B. | ($\frac{π}{6}$,$\frac{2π}{3}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{2π}{3}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2016}$,+∞) | B. | (-$\frac{1}{3}$,+∞) | C. | (-$\frac{1}{2}$,+∞) | D. | (-$\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 336 | B. | 408 | C. | 240 | D. | 264 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{6}$ | B. | 4$\sqrt{6}$ | C. | 6$\sqrt{6}$ | D. | 12$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1≤a≤9 | B. | 6<a<9 | C. | 6≤a≤9 | D. | a≤9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com