4.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,若目標函數(shù)z=$\frac{x}{a}$+$\frac{y}$(a>0,b>0)的最大值為10,則5a+4b的最小值為8.

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識先求出a,b的關(guān)系,然后利用基本不等式求5a+4b的最小值.

解答 解:由z=ax+by(a>0,b>0)得y=$-\frac{a}x+\frac{z}$,
作出可行域如圖:
∵a>0,b>0
∴直線y=$-\frac{a}x+\frac{z}$的斜率為負,且截距最大時,z也最大.
平移直線y=$-\frac{a}x+\frac{z}$,由圖象可知當y=$-\frac{a}x+\frac{z}$經(jīng)過點A時,
直線的截距最大,此時z也最大.
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,即A(4,5).
此時z=$\frac{4}{a}$+$\frac{5}$=10,
即$\frac{2}{5a}$+$\frac{1}{2b}$=1,
則5a+4b=(5a+4b)($\frac{2}{5a}$+$\frac{1}{2b}$)=2+2+$\frac{8b}{5a}$+$\frac{5a}{2b}$≥4+2$\sqrt{\frac{8b}{5a}•\frac{5a}{2b}}$=4+4=8,
當且僅當$\frac{8b}{5a}$=$\frac{5a}{2b}$,即4b=5a時,取等號,
故5a+4b的最小值為8,
故答案為:8;

點評 本題主要考查線性規(guī)劃的應(yīng)用以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=2,公比為q,且b2+S2=16,4S2=qb2
(1)求an與bn;
(2)設(shè)數(shù)列{cn}滿足cn=$\frac{1}{{S}_{n}}$,求cn的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={-1,1,2},B={1,a2-a},若B⊆A,則實數(shù)a的不同取值個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某幾何體三視圖如圖所示,則該幾何體的體積為(俯視圖中弧線是$\frac{1}{4}$圓。ā 。
A.4-πB.π-2C.1-$\frac{π}{2}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,正方形BCDE的邊長為a,已知AB=$\sqrt{3}$BC,將直角△ABE沿BE邊折起,A點在平面BCDE上的射影為D點,則對翻折后的幾何體中有如下描述:
①AB與DE所成角的正切值是$\sqrt{2}$;
②三棱錐B-ACE的體積是$\frac{1}{6}$a3;
③直線BA與平面ADE所成角的正弦值為$\frac{1}{3}$.
④平面EAB⊥平面ADE.
其中錯誤敘述的是③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\overrightarrow{a}$=($\frac{\sqrt{3}}{3}$sinx,2cosx),$\overrightarrow$=(3,-$\frac{1}{2}$),x∈R.
(1)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,試求f(x)的值域;
(2)若x=$\frac{π}{3}$,且滿足2$\overrightarrow{a}$-$\overrightarrow$與$λ\overrightarrow{a}$+$\overrightarrow$相互垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=3+x+2$\sqrt{x+1}$的最小值是( 。
A.4+2$\sqrt{2}$B.1C.5D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.

(Ⅰ)求證:EF∥平面ABC1D1;
(Ⅱ)求三棱錐B1-EBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式an
(2)若a3,a5分別是等差數(shù)列{bn}的第4項和第16項,求數(shù)列{bn}的通項公式及前n項和Sn

查看答案和解析>>

同步練習冊答案