16.函數(shù)y=3+x+2$\sqrt{x+1}$的最小值是( 。
A.4+2$\sqrt{2}$B.1C.5D.2

分析 利用換元法,可將函數(shù)的值域轉(zhuǎn)化為求函數(shù)y=3+t2-1+2t=(t+1)2+1(t≥0)的值域,借助二次函數(shù)的圖象和性質(zhì),可得答案.

解答 解:令t=$\sqrt{x+1}$(t≥0),則x=t2-1,
∴y=3+t2-1+2t=(t+1)2+1,
∵t≥0,
∴t=0時(shí)函數(shù)y=3+x+2$\sqrt{x+1}$的最小值是2,
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的值域,熟練掌握換元法求值域的格式和步驟是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1有相同的焦點(diǎn),且過點(diǎn)M(2,1)的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={1,x},B={1,2},且A∪B={1,2,3},則x=( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,若目標(biāo)函數(shù)z=$\frac{x}{a}$+$\frac{y}$(a>0,b>0)的最大值為10,則5a+4b的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1:$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù))與曲線C2:ρ=4sinθ
(1)寫出曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)求曲線C1和C2公共弦的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x+y的最大值為( 。
A.2B.$\frac{3}{2}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.當(dāng)x=-8時(shí),兩分式$\frac{4}{x-4}$與$\frac{3}{x-1}$的值相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法錯(cuò)誤的是( 。
A.等比數(shù)列可以是遞增、遞減、擺動、常數(shù)數(shù)列
B.等差數(shù)列不可能是擺動數(shù)列
C.既是等差數(shù)列又是等比數(shù)列的數(shù)列有且只有一個(gè)
D.數(shù)列通項(xiàng)公式可能不止一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F是棱CD的中點(diǎn).
(1)求證:EF∥B1D1
(2)求二面角C1-EF-A的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

同步練習(xí)冊答案