【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為=(>0),過點的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線的普通方程;
(Ⅱ)若,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線: ,曲線: (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線, 的極坐標方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點,當取何值時, 取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從全校參加數(shù)學競賽的學生的試卷中抽取一個樣本,考察競賽的成績分布情況,將樣本分成5組,繪成頻率分布直方圖,圖中從左到右各小長方形的高之比為,最右邊一組頻數(shù)是6,請結合直方圖提供的信息,解答下列問題:
(1)樣本量是多少?
(2)列出頻率分布表.
(3)估計這次競賽中,成績高于60分的學生占總人數(shù)的百分比.
(4)成績落在哪個范圍內的人數(shù)最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】物聯(lián)網(wǎng)(Internet of Things,縮寫:IOT)是基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能行使獨立功能的普通物體實現(xiàn)互聯(lián)互通的網(wǎng)絡. 其應用領域主要包括運輸和物流、工業(yè)制造、健康醫(yī)療、智能環(huán)境(家庭、辦公、工廠)等,具有十分廣闊的市場前景. 現(xiàn)有一家物流公司計劃租地建造倉庫儲存貨物,經過市場調查了解到下列信息:倉庫每月土地占地費(單位:萬元),倉庫到車站的距離(單位:千米,),其中與成反比,每月庫存貨物費(單位:萬元)與成正比;若在距離車站9千米處建倉庫,則和分別為2萬元和7. 2萬元. 這家公司應該把倉庫建在距離車站多少千米處,才能使兩項費用之和最。孔钚≠M用是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(為自然對數(shù)的底數(shù)),.
(1)當時,求函數(shù)的極小值;
(2)當時,關于的方程有且只有一個實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)函數(shù)f1(x)=x2﹣x,f2(x)=x2+x+1,h(x)=x2﹣x+1,h(x)是否為f1(x),f2(x)的生成函數(shù)?說明理由;
(2)設f1(x)=1﹣x,f2(x)=,當a=b=1時生成函數(shù)h(x),求h(x)的對稱中心(不必證明);
(3)設f1(x)=x,(x≥2),取a=2,b>0,生成函數(shù)h(x),若函數(shù)h(x)的最小值是5,求實數(shù)b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經過兩點,,且圓心在直線:上.
(1)求圓的方程;
(2)設圓與軸相交于、兩點,點為圓上不同于、的任意一點,直線、交軸于、點.當點變化時,以為直徑的圓是否經過圓內一定點?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)和都是定義在集合上的函數(shù),對于任意的,都有成立,稱函數(shù)與在上互為“互換函數(shù)”.
(1)函數(shù)與在上互為“互換函數(shù)”,求集合;
(2)若函數(shù) (且)與在集合上互為“互換函數(shù)”,求證:;
(3)函數(shù)與在集合且上互為“互換函數(shù)”,當時,,且在上是偶函數(shù),求函數(shù)在集合上的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐試驗.受其啟發(fā),我們也可以通過設計下面的試驗來估計的值,試驗步驟如下:①先請高二年級 500名同學每人在小卡片上隨機寫下一個實數(shù)對;②若卡片上的能與1構成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為;④根據(jù)統(tǒng)計數(shù)估計的值.假如本次試驗的統(tǒng)計結果是,那么可以估計的值約為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com