17.已知某超市購(gòu)進(jìn)一批冰箱,這些冰箱60%來(lái)自上海,40%來(lái)自廣州,上海冰箱的合格率為90%,廣州冰箱的合格率為80%.若用A1、A2分別表示來(lái)自上海、廣州的冰箱,B表示冰箱為合格品,試求:P(A1)、P(A2)、P(B|A1)、P($\overline{B}$|A2)各為多少?

分析 利用條件概率的意義,即可得出結(jié)論.

解答 解:由題意,P(A1)=0.6,P(A2)=0.4,
P(B|A1)表示來(lái)自上海的條件下,冰箱的合格率為0.6×0.9=0.54;
P($\overline{B}$|A2)表示來(lái)自廣州的條件下,冰箱的不合格率為0.4×0.2=0.08.

點(diǎn)評(píng) 本題考查概率的計(jì)算,考查條件概率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且a2,a5,a14分別等于等比數(shù)列{bn}的b2,b3,b4
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=$\left\{\begin{array}{l}{3(n=1)}\\{{a}_{n}+2_{n}(n≥2)}\end{array}\right.$,求c1+c2+…+c100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知中心在原點(diǎn)O的橢圓左,右焦點(diǎn)分別為F1,F(xiàn)2,F(xiàn)2(1,0),且橢圓過(guò)點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓的方程;
(2)過(guò)F2的直線l與橢圓交于不同的兩點(diǎn)A,B,則△F1AB的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}是公比大于1的等比數(shù)列,且a3+a5=20,a4=8,則其前n項(xiàng)和Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=(2a+1)x+b與g(x)=x2-2(1-a)x+2在(-∞,4]上都是遞減的,實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-3]B.(-∞,-3)C.[-3,-$\frac{1}{2}$)D.(-3,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知{an}滿足a1=1,an+an+1=($\frac{1}{4}$)n(n∈N*),Sn=a1+4a2+42a3+…+4n-1an,則5Sn-4nan=(  )
A.n-1B.nC.2nD.n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,一樓高AB為17.5m,某廣告公司在樓頂安裝一塊高BC為2m的廣告牌,安裝過(guò)程中,工作人員利用一個(gè)高EF為1.5m的儀器檢測(cè)安裝效果,設(shè)AE=xm,該儀器觀察到廣告牌的視角∠BFC=θ.
(1)若x=8,求tan∠BFC;
(2)為確保觀察效果,要求視角的正切值即tan∠BFC不小于$\frac{1}{18}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,則函數(shù)f(x)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZB.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z
C.[2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別為A(0,0),B(6,0),頂點(diǎn)C在曲線y=x2+3上運(yùn)動(dòng),求△ABC重心的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案