20.極坐標(biāo)方程ρ(cosθ+sinθ)-1=0化為直角坐標(biāo)方程是x+y-1=0.

分析 根據(jù)x=ρcosθ,y=ρsinθ可得直角坐標(biāo)方程.

解答 解:∵ρ(cosθ+sinθ)-1=0,
∴ρcosθ+ρsinθ-1=0,
∵x=ρcosθ,y=ρsinθ,
∴x+y-1=0,
故答案為:x+y-1=0.

點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)方程互化、是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(x-1)ex-$\frac{1}{2}a{x^2}$+1,a∈R.
(1)當(dāng)a=1時(shí),證明:xf(x)≥0;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos2x-sin2x+$\frac{1}{2}$,x∈(0,π).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC為銳角三角形,角A所對邊a=$\sqrt{19}$,角B所對邊b=5,若f(A)=0,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$cos(α-\frac{π}{4})=-\frac{1}{3}$,則sin(-3π+2α)=( 。
A.$\frac{7}{9}$B.$-\frac{7}{9}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.關(guān)于函數(shù)$f(x)=\frac{lnx}{x^2}$極值的判斷,正確的是( 。
A.x=1時(shí),y極大值=0B.x=e時(shí),y極大值=$\frac{1}{e^2}$
C.x=e時(shí),y極小值=$\frac{1}{e^2}$D.$x=\sqrt{e}$時(shí),y極大值=$\frac{1}{2e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)={x^3}-\frac{9}{2}{x^2}+6x-a$.
(1)對任意實(shí)數(shù)x,f'(x)≥m恒成立,求m的最大值;
(2)若函數(shù)f(x)恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在高臺跳水運(yùn)動中,某運(yùn)動員相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+6.5t+10.則該運(yùn)動員在t=0.5s時(shí)的瞬時(shí)速度為v=1.6m/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線ax+by=1與圓x2+y2=1相切,則該直線與坐標(biāo)軸所圍成的三角形的面積的最小值等于( 。
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}中,a1=1,a2=3,且an+2=an+1+2an,求通項(xiàng)公式an

查看答案和解析>>

同步練習(xí)冊答案