1.已知數(shù)列{an}中,a1=1,a2=3,且an+2=an+1+2an,求通項公式an

分析 由an+2=an+1+2an,兩邊同加an+1,得an+2+an+1=2(an+1+an),可判斷{an+1+an}是等比數(shù)列,從而可得an+1+an=4•2n-1①;由an+2=an+1+2an,兩邊同減2an+1,得an+2-2an+1=-(an+1-2an),可判斷{an+1-2an}是等比數(shù)列,從而可得an+1-2an=(-1)n-1②,聯(lián)立①②可得結(jié)果.

解答 解:an+2=an+1+2an,兩邊同加an+1,得an+2+an+1=2(an+1+an),
又a1=1,a2=3,∴{an+1+an}是首項為4,公比為2的等比數(shù)列,
∴an+1+an=4•2n-1①;
an+2=an+1+2an,兩邊同減2an+1,得an+2-2an+1=-(an+1-2an),
∴{an+1-2an}是首項為1,公比為-1的等比數(shù)列,
∴an+1-2an=(-1)n-1②,
由①②得an=$\frac{4}{3}$•2n-1-$\frac{1}{3}$•(-1)n-1

點評 本題考查由數(shù)列遞推式求數(shù)列通項、等比數(shù)列的定義及通項公式,考查學(xué)生推理論證能力、分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.極坐標(biāo)方程ρ(cosθ+sinθ)-1=0化為直角坐標(biāo)方程是x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等比數(shù)列{an}中,a2=1,a4=2,則a6=( 。
A.$2\sqrt{2}$B.4C.$4\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.13πB.16πC.17πD.21π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,則$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至4月份每月10日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期晝夜溫差x(℃)就診人數(shù)y(人)
1月10日1125
2月10日1329
3月10日1226
4月10日816
(1)請根據(jù)1至4月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=bx+a;
(2)根據(jù)線性回歸方程,估計晝夜溫差為14℃時,就診人數(shù)為多少人?
(參考公式:b=$\frac{\sum_{i=1}^{4}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{4}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某醫(yī)療科研項目對5只實驗小白鼠體內(nèi)的A、B兩項指標(biāo)數(shù)據(jù)進(jìn)行收集和分析,得到的數(shù)據(jù)如下表:
指標(biāo)1號小白鼠2號小白鼠3號小白鼠4號小白鼠5號小白鼠
A57698
B22344
(1)若通過數(shù)據(jù)分析,得知A項指標(biāo)數(shù)據(jù)與B項指標(biāo)數(shù)據(jù)具有線性相關(guān)關(guān)系,試根據(jù)上表,求B項指標(biāo)數(shù)據(jù)y關(guān)于A項指標(biāo)數(shù)據(jù)x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)現(xiàn)要從這5只小白鼠中隨機(jī)抽取3只,求其中至少有一只B項指標(biāo)數(shù)據(jù)高于3的概率.
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則其表面積為( 。
A.18B.22C.21D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.i是虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1-i}$=-1+2i.

查看答案和解析>>

同步練習(xí)冊答案