【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn) 再取兩個(gè)動(dòng)點(diǎn),,且.
(Ⅰ)求直線與交點(diǎn)M的軌跡C的方程;
(Ⅱ)過(guò)的直線與軌跡C交于P,Q,過(guò)P作軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若,求證:.
【答案】(Ⅰ) ; (Ⅱ)見(jiàn)解析.
【解析】【試題分析】(Ⅰ)先建立動(dòng)直線的方程,再運(yùn)用消參法探求軌跡方程; (Ⅱ)借助直線與橢圓的位置關(guān)系推證:
(Ⅰ)依題意知直線A1N1的方程為 ①
直線A2N2的方程為 ②………………………………2分
設(shè)M(x,y)是直線A1N1與A2N2交點(diǎn),①×②得 ,
由mn=2,整理得; ………………………………4分
(Ⅱ)設(shè),
由 () ………………………………6分
由故, ………………8分
要證,即證,只需證:
只需即證 即,………10分
由()得:,即證. ……………………12分
(本題亦可先證直線NQ過(guò)焦點(diǎn)F,再由得證)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓G:,過(guò)點(diǎn)A(0,5),B(﹣8,﹣3),C、D在該橢圓上,直線CD過(guò)原點(diǎn)O,且在線段AB的右下側(cè).
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=b·ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24).
(1)求f(x);
(2)若不等式-m≥0在x∈(-∞,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域?yàn)?/span>,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過(guò)4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),是的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),.
(Ⅰ)討論的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若對(duì)于,總有.(i)求實(shí)數(shù)的范圍; (ii)求證:對(duì)于,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)設(shè)a=2,函數(shù)f(x)的定義域?yàn)?/span>[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說(shuō)明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com