7.在用線性回歸方程研究四組數(shù)據(jù)的擬合效果中,分別作出下列四個關(guān)于四組數(shù)據(jù)的殘差圖,則用線性回歸模式擬合效果最佳的是(  )
A.B.
C.D.

分析 根據(jù)殘差點比較均勻地落在水平的袋裝區(qū)域中,
且?guī)顓^(qū)域的寬度越窄,擬合精度越好,擬合效果越好,
由此得出結(jié)論.

解答 解:當殘差點比較均勻地落在水平的袋裝區(qū)域中,說明選用的模型比較合適,
這樣的帶狀區(qū)域的寬度越窄,說明擬合精度越好,擬合效果越好,
對比4個殘差圖,易知選項C的圖對應(yīng)的袋裝區(qū)域的寬度越窄.
故選:C.

點評 本題考查了殘差圖的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知過原點的直線l1與直線l2:x+3y+1=0垂直,圓C的方程為x2+y2-2ax-2ay=1-2a2(a>0),若直線l1與圓C交于M,N兩點,則當△CMN的面積最大時,圓心C的坐標為( 。
A.$({\frac{{\sqrt{5}}}{2},\frac{{\sqrt{5}}}{2}})$B.$({\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}})$C.$({\frac{1}{2},\frac{1}{2}})$D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=ax+b,(a,b為常數(shù)),使得f(x)≥g(x)
對一切實數(shù)x都成立,則稱g(x)為函數(shù)f(x)的一個承托函數(shù).給出如下命題:
①函數(shù)g(x)=-2是函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>0\\ 1,x≤0\end{array}\right.$的一個承托函數(shù);
②函數(shù)g(x)=x-1是函數(shù)f(x)=x+sinx的一個承托函數(shù);
③若函數(shù)g(x)=ax是函數(shù)f(x)=ex的一個承托函數(shù),則a的取值范圍是[0,e];
④值域是R的函數(shù)f(x)不存在承托函數(shù).
其中正確的命題的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若2f(x)+f(-x)=x3+x+3對x∈R恒成立,則曲線y=f(x)在點(2,f(2))處的切線方程為13x-y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點和上頂點分別為A,B,左焦點為F,以原點O為圓心的圓與直線BF相切,且該圓與y軸的正半軸交于點C,過點C的直線交橢圓于M,N兩點,若四邊形FAMN是平行四邊形,則該橢圓的離心率為( 。
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若復(fù)數(shù)z=$\frac{3-i}{|2-i|}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\sqrt{x+1}$+lg(6-3x)的定義域為(  )
A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=\frac{a^x}{{{a^x}+1}}+btanx+{x^2}$(a>0,a≠1),若f(1)=3,則f(-1)等于( 。
A.-3B.-1C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{a-{e}^{x}}{1+a{e}^{x}}$(a為常數(shù)且a>0)在定義域上為奇函數(shù),則函數(shù)f(x)的值域為(-1,1).

查看答案和解析>>

同步練習(xí)冊答案