20.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n,數(shù)列{bn}滿足:bn=$\sqrt{{2^{a_n}}}$.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (1)由當(dāng)n=1時(shí),a1=S1=2,則當(dāng)n≥2時(shí),an=Sn-Sn-1=2n,即可求得bn;
(2)利用“錯(cuò)位相減法”即可求得數(shù)列{cn}的前n項(xiàng)和Tn

解答 解:(1)由${S_n}={n^2}+n$得:當(dāng)n=1時(shí),a1=S1=2;
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n,
由于a1=2也滿足an=2n,故an=2n(n∈N+);
由${b_n}=\sqrt{{2^{a_n}}}$=$\sqrt{{2}^{2n}}$=2n,(n∈N+).
(2)由(1)可知:cn=anbn=2n•2n,
所以${T_n}=2×1×{2^1}+2×2×{2^2}+2×3×{2^3}+…+(2n)•{2^n}$,①
$2{T_n}=2×1×{2^2}+2×2×{2^3}+2×3×{2^4}+…+(2n)•{2^{n+1}}$,②
②-①得${T_n}=2×n×{2^{n+1}}-2×({2^1}+{2^2}+{2^3}+…+{2^n})$=(n-1)•2n+2+4,
∴數(shù)列{cn}的前n項(xiàng)和Tn=(n-1)•2n+2+4.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式,“錯(cuò)位相減法”求數(shù)列的前n項(xiàng)和,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n(n∈N*)的展開式中,第6項(xiàng)為常數(shù)項(xiàng),那么其展開式中共有3項(xiàng)是有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示的莖葉圖表示的是甲、乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污損,若乙的總成績(jī)是445,則污損的數(shù)字是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.sin60°cos15°-cos300°sin165°的值為( 。
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)(1+2i)x=2+yi,其中x,y是實(shí)數(shù),則|x+yi|=( 。
A.2B.4C.$2\sqrt{5}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,已知AB=AC=2BC,則sinA=$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)實(shí)軸的兩個(gè)端點(diǎn)和拋物線x2=-4by的焦點(diǎn)連成一個(gè)等邊三角形,則此雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z=$\frac{1}{1-i}$,則$\overline{z}$•i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=2sin(ωx+θ)+a(ω>0,0<θ<π,a>0)為偶函數(shù),其圖象與直線y=2+a的交點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則( 。
A.ω=2,$θ=\frac{π}{2}$B.$ω=\frac{1}{2}$,$θ=\frac{π}{2}$C.$ω=\frac{1}{2}$,$θ=\frac{π}{4}$D.ω=2,$θ=\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案