【題目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圓,則圓心坐標(biāo)是 , 半徑是
【答案】(﹣2,﹣4);5
【解析】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圓, ∴a2=a+2≠0,解得a=﹣1或a=2.
當(dāng)a=﹣1時,方程化為x2+y2+4x+8y﹣5=0,
配方得(x+2)2+(y+4)2=25,所得圓的圓心坐標(biāo)為(﹣2,﹣4),半徑為5;
當(dāng)a=2時,方程化為 ,
此時 ,方程不表示圓,
所以答案是:(﹣2,﹣4),5.
【考點精析】解答此題的關(guān)鍵在于理解圓的一般方程的相關(guān)知識,掌握圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線關(guān)于直線對稱的直線為,直線與橢圓分別交于點、和、,記直線的斜率為.
(Ⅰ)求的值;
(Ⅱ)當(dāng)變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標(biāo);若不恒過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1 , AB,CC1的中點,則異面直線A1E與GF所成角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組中,f(x)與g(x)表示同一函數(shù)的是( )
A.f(x)=x,
B.f(x)=x,
C.f(x)=x2 ,
D.f(x)=|x|,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別過橢圓E: =1(a>b>0)左、右焦點F1、F2的動直線l1、l2相交于P點,與橢圓E分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4 , 且滿足k1+k2=k3+k4 , 已知當(dāng)l1與x軸重合時,|AB|=2 ,|CD|= .
(1)求橢圓E的方程;
(2)是否存在定點M,N,使得|PM|+|PN|為定值?若存在,求出M、N點坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果二面角α﹣L﹣β的大小是60°,線段AB在α內(nèi),AB與L所成的角為60°,則AB與平面β所成角的正切值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∪B={﹣3,4},A∩B={﹣3},求實數(shù)b,c的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com