精英家教網 > 高中數學 > 題目詳情

【題目】某市需對某環(huán)城快速車道進行限速,為了調研該道路車速情況,于某個時段隨機對輛車的速度進行取樣,測量的車速制成如下條形圖:

經計算:樣本的平均值,標準差,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現規(guī)定車速小于或車速大于是需矯正速度.

(1)從該快速車道上所有車輛中任取個,求該車輛是需矯正速度的概率;

(2)從樣本中任取個車輛,求這個車輛均是需矯正速度的概率;

(3)從該快速車道上所有車輛中任取個,記其中是需矯正速度的個數為,求的分布列和數學期望.

【答案】(1) ;(2 ) ;(3)見解析.

【解析】試題分析:(1)記事件從該快速車道上所有車輛中任取個,該車輛是需矯正速度,根據給出的條形圖,即可求解事件的概率;

2)記事件從樣本中任取個車輛,這個車輛均是需矯正速度根據題設,利用古典概型及其概率的計算公式,即可求解事件概率;

3)由題意得,需矯正速度的個數服從二項分布,即可求解對應的概率,列出分布列,計算數學期望。

試題解析:(1)記事件從該快速車道上所有車輛中任取個,該車輛是需矯正速度,

因為,

由樣本條形圖可知,所求的概率為

.

2)記事件從樣本中任取個車輛,這個車輛均是需矯正速度

由題設可知樣本容量為,又需矯正速度個數為個,故所求概率為.

3)需矯正速度的個數服從二項分布,即

,

,

因此的分布列為

,知數學期望.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的長軸長為, 為坐標原點.

(1)求橢圓的方程和離心率.

(2)設點,動點軸上,動點在橢圓上,且點軸的右側.若,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數的圖象向左平移個單位,得函數的圖象(如圖) ,點分別是函數圖象上軸兩側相鄰的最高點和最低點,設,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數據如下:

27

38

30

37

35

31

33

29

38

34

28

36

(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;

(2)估計甲、乙兩運動員的最大速度的平均數和方差,并判斷誰參加比賽更合適.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是橢圓的左、右焦點, 為坐標原點,點在橢圓上,線段軸的交點滿足

(Ⅰ)求橢圓的標準方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點、,當,且滿足時,求的面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若曲線處的切線方程為,求的極值;

(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000,給每條魚做上不影響其存活的標記,然后放回池塘,待完全混合后,再每次從池塘中隨機地捕出1 000條魚,記錄下其中有記號的魚的數目,立即放回池塘中.這樣的記錄做了10,并將記錄獲取的數據制作成如圖所示的莖葉圖.

(1)根據莖葉圖計算有記號的鯉魚和鯽魚數目的平均數,并估計池塘中的鯉魚和鯽魚的數量;

(2)為了估計池塘中魚的總質量,現按照(1)中的比例對100條魚進行稱重,根據稱重魚的質量介于[0,4.5](單位:千克)之間,將測量結果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.

估計池塘中魚的質量在3千克以上(3千克)的條數;

若第三組魚的條數比第二組多7條、第四組魚的條數比第三組多7,請將頻率分布直方圖補充完整;

的條件下估計池塘中魚的質量的眾數及池塘中魚的總質量.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是等邊三角形,邊長為4, 邊的中點為,橢圓, 為左、右兩焦點,且經過、兩點。

(1)求該橢圓的標準方程;

(2)過點軸不垂直的直線交橢圓于, 兩點,求證:直線的交點在一條定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校課題組為了研究學生的數學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數學成績及格的60名學生中有45人比較細心,另外15人比較粗心;在數學成績不及格的40名學生中有10人比較細心,另外30人比較粗心.

(1)試根據上述數據完成列聯表;

數學成績及格

數學成績不及格

合計

比較細心

45

比較粗心

合計

60

100

(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數學成績與細心程度有關系?

參考數據:獨立檢驗隨機變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

同步練習冊答案