【題目】已知橢圓的長軸長為, 為坐標原點.
(1)求橢圓的方程和離心率.
(2)設點,動點在軸上,動點在橢圓上,且點在軸的右側(cè).若,求四邊形面積的最小值.
【答案】(1), ;(2).
【解析】(1)由已知,將橢圓方程轉(zhuǎn)化為標準形式,確定其長軸、短軸,并求出參數(shù)的值,從而求出橢圓方程及其離心率;(2)根據(jù)題意結(jié)合草圖,易知,通過動點的坐標求出點的坐標,將四邊形分割成三角形和三角形進行運算即可.
試題解析:(1)由題意知橢圓 ,
所以, ,
故,
解得,
所以橢圓的方程為.
因為,
所以離心率.
(2)設線段的中點為.
因為,所以.
由題意知直線的斜率存在,
設點的坐標為,
則點的坐標為,直線的斜率,
所以直線的斜率,
故直線的方程為.
令,得,故.
由,得,化簡得.
因此,
.
當且僅當時,即時等號成立.
故四邊形面積的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應分別補充的條件為( )
、佟 、
A. ①n3≥1 000?、趎3<1 000?
B. ①n3≤1 000? ②n3≥1 000?
C. ①n3<1 000?、趎3≥1 000?
D. ①n3<1 000?、趎3<1 000?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn) , 兩種產(chǎn)品,根據(jù)市場調(diào)查與預測, 產(chǎn)品的利潤與投資關(guān)系如圖(1)所示; 產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤和投資單位:萬元).
(1)分別將 , 兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到 萬元資金,并將全部投入 , 兩種產(chǎn)品的生產(chǎn).問怎樣分配這 萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列4個命題:
①“若成等比數(shù)列,則”的逆命題;
②“如果,則”的否命題;
③在中,“若”則“”的逆否命題;
④當時,若對恒成立,則的取值范圍是.
其中真命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓是以的中點為圓心, 為半徑的圓.
(Ⅰ)若圓的切線在軸和軸上截距相等,求切線方程;
(Ⅱ)若是圓外一點,從向圓引切線, 為切點, 為坐標原點,且有,求使最小的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為, ,過點與軸垂直的直線交橢圓于、兩點, 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,直線: 與軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市需對某環(huán)城快速車道進行限速,為了調(diào)研該道路車速情況,于某個時段隨機對輛車的速度進行取樣,測量的車速制成如下條形圖:
經(jīng)計算:樣本的平均值,標準差,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現(xiàn)規(guī)定車速小于或車速大于是需矯正速度.
(1)從該快速車道上所有車輛中任取個,求該車輛是需矯正速度的概率;
(2)從樣本中任取個車輛,求這個車輛均是需矯正速度的概率;
(3)從該快速車道上所有車輛中任取個,記其中是需矯正速度的個數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com