16.兩點A(1,1,2)、B(2,1,1)的距離等于$\sqrt{2}$.

分析 直接利用空間距離公式求解即可.

解答 解:兩點A(1,1,2)、B(2,1,1)的距離:$\sqrt{({1-2)}^{2}+({1-1)}^{2}+(2-1)^{2}}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查空間距離公式的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若x,y滿足x2-2xy+3y2=4,則$\frac{1}{{x}^{2}+{y}^{2}}$最大值與最小值的和是( 。
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系xOy中,已知圓C:(x-3)2+(y-4)2=5,A、B是圓C上的兩個動點,AB=2,則$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范圍為[8-4$\sqrt{5}$,8+4$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.計算下列函數(shù)的導數(shù):
(1)y=$\frac{lnx}{x}$+sinx
(2)y=x2+$\sqrt{x}$-ex•cosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列說法中:
①$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$;
②在△ABC中,A>B,則sinA>sinB.;
③等比數(shù)列的前三項依次是a,2a+2,3a+3,則a的值為-1或-3;
④在△ABC中,a=2$\sqrt{3}$,b=6,A=30°,則B=60°;
⑤數(shù)列{an}的通項公式an=3•22n-1,則數(shù)列{an}是以2為公比的等比數(shù)列;
⑥已知數(shù)列{an}的前n項和為Sn,a1=-2,an+1=1-$\frac{1}{a_n}$,則S25的值為-$\frac{10}{3}$.
其中結論正確是①②⑥(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知α為第二象限角,sinα+cosα=$\frac{1}{5}$,則cos2α=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設點O是面積為6的△ABC內部一點,且有$\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow 0$,則△AOC的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{6}$),當x∈[0,$\frac{π}{2}}$]時,f(x)的最大值、最小值分別為( 。
A.$\sqrt{2}$、-$\frac{{\sqrt{2}}}{2}$B.1、-$\frac{1}{2}$C.1、-$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$、$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)f(x)=x2-2x+m在[3,+∞)上的最小值為1,則實數(shù)m的值為-2.

查看答案和解析>>

同步練習冊答案