已知雙曲線,則其漸近線方程為_(kāi)________,  離心率為_(kāi)_______.

解析試題分析:由得其漸近線方程為,離心率。
考點(diǎn):本題主要考查雙曲線的幾何性質(zhì)。
點(diǎn)評(píng):簡(jiǎn)單題,確定雙曲線的漸近線,可以在雙曲線標(biāo)準(zhǔn)方程中,將1化為0 ,化簡(jiǎn)即得。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知雙曲線的離心率是,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知橢圓C1的中心在原點(diǎn)、焦點(diǎn)在x軸上,拋物線C2的頂點(diǎn)在原點(diǎn)、焦點(diǎn)在x軸上。小明從曲線C1,C2上各取若干個(gè)點(diǎn)(每條曲線上至少取兩個(gè)點(diǎn)),并記錄其坐標(biāo)(x,y)。由于記錄失誤,使得其中恰好有一個(gè)點(diǎn)既不在橢圓上C1上,也不在拋物線C2上。小明的記錄如下:

X
 
-2
 
-
 
0
 
2
 
2
 
3
 
Y
 
2
 
0
 

 
-2
 

 
-2
 
據(jù)此,可推斷橢圓C1的方程為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在平面斜坐標(biāo)系xOy中,,平面上任意一點(diǎn)P關(guān)于斜坐標(biāo)系的斜坐標(biāo)這樣定義:若(其中,分別是x軸,y軸正方向的單位向量),則P點(diǎn)的斜坐標(biāo)為(x,y),向量的斜坐標(biāo)為(x,y).給出以下結(jié)論:

①若,P(2,-1),則
②若,,則
③若(x,y),,則;
④若,,則;
⑤若,以O(shè)為圓心,1為半徑的圓的斜坐標(biāo)方程為
其中所有正確的結(jié)論的序號(hào)是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知拋物線的準(zhǔn)線經(jīng)過(guò)橢圓的左焦點(diǎn),且經(jīng)過(guò)拋物線與橢圓兩個(gè)交點(diǎn)的弦過(guò)拋物線的焦點(diǎn),則橢圓的離心率為_(kāi)____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在平面直角坐標(biāo)系中,橢圓的中心為原點(diǎn),焦點(diǎn)軸上,離心率為。過(guò)的直線 交橢圓兩點(diǎn),且的周長(zhǎng)為16,那么的方程為          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

橢圓(為參數(shù))的離心率是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F(,0),直線與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若雙曲線的離心率,則      

查看答案和解析>>

同步練習(xí)冊(cè)答案