分析 由an+1=$\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶數(shù)\\ 3{a_n}+1,{a_n}是奇數(shù)\end{array}$且a1<6,S3=29.經(jīng)過驗證只有a1=5,a2=16,a3=8,滿足S3=29.可得:a4=4,a5=2,a6=1,a7=4.n≥4時,an+3=an.可得S2015=29+(a4+a5+a6)×670+a4+a5.
解答 解:∵an+1=$\left\{\begin{array}{l}\frac{a_n}{2},{a_n}是偶數(shù)\\ 3{a_n}+1,{a_n}是奇數(shù)\end{array}$且a1<6,S3=29,
若a1=2,則a2=1,a3=4,不滿足S3=29,舍去.經(jīng)過驗證只有a1=5,a2=16,a3=8,滿足S3=29.
∴a4=$\frac{8}{2}$=4,a5=2,a6=1,a7=4.
∴n≥4時,an+3=an.
∴S2015=29+(a4+a5+a6)×670+a4+a5
=29+7×670+6
=4725.
故答案為:4725.
點評 本題考查了數(shù)列的遞推關(guān)系、周期性、數(shù)列求和,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}+\sqrt{3}}}{6}$ | B. | $\frac{{2\sqrt{2}-\sqrt{3}}}{6}$ | C. | $\frac{{\sqrt{2}+2\sqrt{3}}}{6}$ | D. | $\frac{{\sqrt{2}-2\sqrt{3}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinα)>f(cosβ) | B. | f(sinα)<f(cosβ) | ||
C. | f(sinα)=f(cosβ) | D. | 以上情況均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2b+c有最大值9 | B. | 2b+c有最小值9 | C. | 2b+c有最大值-9 | D. | 2b+c有最小值-9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com