對于函數(shù)f(x)=ax2+bx+c(a≠0)作代換x=g(t),則不改變函數(shù)f(x)的值域的代換是


  1. A.
    g(t)=2t
  2. B.
    g(t)=|t|
  3. C.
    g(t)=sint
  4. D.
    g(t)=log2t
D
分析:首先分析函數(shù)f(x)=ax2+bx+c (a≠0,b、c∈R)與h(t),使f(x)值域不變時x的值.然后分別求A,B,C,D的值域,即可判斷.
解答:∵對函數(shù)f(x)=ax2+bx+c (a≠0,b、c∈R),x取值范圍是R,即全體實數(shù)集.
∵作x=g(t)的代換,使得代換前后函數(shù)的值域總不改變,只需x=g(t)的值域為R.
A:值域為{t|t>0},B:值域為{t|t≥0},C:值域為[-1,1],D:值域為R.
故選D.
點評:本題考查對數(shù)函數(shù)的定義域,正弦函數(shù)的定義域,指數(shù)函數(shù)的定義域,通過對值域的理解做題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=a-
22x+1
(a∈R)
(1)求函數(shù)f(x)的定義域和值域;
(2)探索函數(shù)f(x)的單調性,并寫出探索過程;
(3)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在求出a的值,不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=a-
22x+1
(a∈R)

(1)探索函數(shù)f(x)的單調性
(2)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù),若存在,求出a的取值;若不存在,說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調性并證明;
(Ⅱ) 是否存在實數(shù)a,使得f(x)為奇函數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調性并證明;
(Ⅱ)是否存在實數(shù)a,使得f(x)為奇函數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=a x2+(b+1)x+b-2(a≠0),若存在實數(shù) x0,使f( x0)=x0成立,則稱 x0為f(x)的不動點
(1)當a=2,b=-2時,求f(x)的不動點;
(2)若對于任何實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求實數(shù)a的取值范圍;
(3)在(2)的條件下判斷直線L:y=ax+1與圓(x-2)2+(y+2)2=4 a2+4的位置關系.

查看答案和解析>>

同步練習冊答案