20.已知$\frac{1+2+3+4+…+2n}{1+3+5+…+(2n-1)}$=$\frac{21}{10}$,則n的值是( 。
A.10B.11C.12D.13

分析 根據(jù)等差數(shù)列的前n項和公式計算即可.

解答 解:∵1+2+3+…+2n=$\frac{2n(2n+1)}{2}$=n(2n+1),
1+3+5+…+2n-1=$\frac{n(2n-1+1)}{2}$=n2,
∴$\frac{1+2+3+4+…+2n}{1+3+5+…+(2n-1)}$=$\frac{n(2n+1)}{{n}^{2}}$=$\frac{21}{10}$,
解得n=10,
故選:A.

點評 本題考查了等差數(shù)列的前n項和公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.甲乙兩人相約上午8點到9點在某地會面,先到者等候另一個人20分鐘,過時離去,則甲乙兩人能夠會面的概率是(  )
A.$\frac{1}{9}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)滿足:
①f(-$\frac{2π}{3}$)=f($\frac{π}{6}$)=f($\frac{π}{3}$);
②在區(qū)間[-$\frac{2π}{3},\frac{π}{6}$]內(nèi)有最大值無最小值;
③在區(qū)間[$\frac{π}{6},\frac{π}{3}$]內(nèi)有最小值無最大值;
④經(jīng)過M($\frac{π}{6},-\sqrt{3}$).
(1)求f(x)的解析式;
(2)若f(x+$\frac{π}{6}$)=$\frac{6}{5}$,求sin($\frac{π}{6}$-2x)值.
(3)不等式f2(x)+f(x)≥2m+1的解集不為空集,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=1,其前n項和是Sn對任意正整數(shù)n,Sn=n2an,求此數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.集合A={-1,1,2}的所有真子集的個數(shù)是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)y=f(x+1)是偶函數(shù),則函數(shù)y=f(x)的圖象的對稱軸方程是( 。
A.x=1B.x=-1C.x=2D.x=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,F(xiàn)(x)=2f(x)-x有2個零點,則實數(shù)a的取值范圍是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在一次實驗中,測得(x,y)的四組值分別是A(1,2),B(2,2.8),C(3,4),D(4,5.2),則y與x之間的回歸直線方程為( 。
A.$\stackrel{∧}{y}$=2x+1B.$\stackrel{∧}{y}$=x+2C.$\stackrel{∧}{y}$=x+1D.$\stackrel{∧}{y}$=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x+a)(|x|+2)+b(a,b∈R)
(1)若f(x)在R上不單調(diào),求實數(shù)a的取值范圍;
(2)若a≤-4且y=f(x)在[-1,1]上有兩個零點,求a2+(b-17)2的最小值.

查看答案和解析>>

同步練習(xí)冊答案