19.已知α∈($-\frac{π}{4}$,0),β∈($\frac{π}{2}$,π),cos(α+β)=-$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=$\frac{5}{13}$,則cos(α+$\frac{5π}{4}$)=-$\frac{16}{65}$.

分析 利用同角三角函數(shù)的基本關(guān)系求得sin(α+β)和sin(β-$\frac{π}{4}$),再利用兩角差的余弦公式求得則cos(α+$\frac{5π}{4}$)=cos[π+(α+$\frac{π}{4}$)]的值.

解答 解:∵α∈($-\frac{π}{4}$,0),β∈($\frac{π}{2}$,π),cos(α+β)=-$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=$\frac{5}{13}$,
∴α+β∈($\frac{π}{2}$,π),β-$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{π}{2}$),
∴sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{3}{5}$,sin(β-$\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(β-\frac{π}{4})}$=$\frac{12}{13}$,
則cos(α+$\frac{5π}{4}$)=cos[π+(α+$\frac{π}{4}$)]=-cos(α+$\frac{π}{4}$)=-cos[(α+β)-(β-$\frac{π}{4}$)]
=-cos(α+β)•cos(β-$\frac{π}{4}$)-sin(α+β)•sin(β-$\frac{π}{4}$)=-(-$\frac{4}{5}$)•$\frac{5}{13}$-$\frac{3}{5}$•$\frac{12}{13}$=-$\frac{16}{65}$,
故答案為:-$\frac{16}{65}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=1,SD=$\sqrt{7}$.
(Ⅰ)求證:CD⊥SD;
(Ⅱ)求SB與面SCD成的線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l1的方程為x-y-3=0,l1為拋物線x2=ay(a>0)的準(zhǔn)線,拋物線上一動點P到l1,l2距離之和的最小值為2$\sqrt{2}$,則實數(shù)a的值為( 。
A.lB.2C.4D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是一個幾何體的三視圖,若該幾何體的底面為直角梯形,則該幾何體體積為(  )
A.8B.10C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線C:x2=4y,過點P(0,m)(m>0)的動直線l與C相交于A,B兩點,拋物線C在點A和點B處的切線相交于點Q,直線AQ,BQ與x軸分別相交于點E,F(xiàn).
(Ⅰ)寫出拋物線C的焦點坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:點Q在直線y=-m上;
(Ⅲ)判斷是否存在點P,使得四邊形PEQF為矩形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}的前三項為a-1,4,2a,記前n項和為Sn
(1)若Sk=30,求a和k的值;
(2)設(shè)bn=$\frac{S_n}{n}$,求b1+b2+b3+…bn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若一組數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)為2,方差為3,2x1+5,2x2+5,2x3+5,…,2xn+5的平均數(shù)和方差分別是( 。
A.9,11B.4,11C.9,12D.4,17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列{an}中,an=$\frac{1}{{{a_{n-1}}}}$+1,若a1=1,則a2=2;若a4=4,則a2=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x||x-1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},則A∩B=(  )
A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.{-1,1,2,3}

查看答案和解析>>

同步練習(xí)冊答案