17.已知扇形的圓心角為$\frac{2π}{3}$,半徑為6,則扇形的面積是12π.

分析 直接根據(jù)扇形的面積公式進(jìn)行計(jì)算即可得解.

解答 解:∵扇形的圓心角為$\frac{2π}{3}$=120°,其半徑為6,
∴S扇形=$\frac{120π×{6}^{2}}{360}$=12π.
故答案為:12π.

點(diǎn)評(píng) 本題考查的是扇形面積的計(jì)算,熟記扇形的面積公式是解答此題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)y=f(x)的定義域?yàn)镽,當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的x,y∈R都有f(x+y)=f(x)•f(y),則不等式f(log${\;}_{\frac{1}{2}}$x)≤$\frac{1}{f(lo{g}_{\frac{1}{2}}x+1)}$的解集為[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.函數(shù)f(x)=$\sqrt{|x|+|{x+1}|-3}$.
(1)求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|-1<x<2},當(dāng)實(shí)數(shù)a,b∈(B∩(∁RA))時(shí),證明:$\frac{{|{a+b}|}}{2}$<|1+$\frac{ab}{4}}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行如圖的程序框圖,如果輸入x=1,則輸出t的值為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,該程序框圖的算法思路來(lái)源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸出的a=3,則輸入的a,b分別可能為( 。
A.15、18B.14、18C.13、18D.12、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知非零向量$\overrightarrow a$,$\overrightarrow b$,且$\overrightarrow a$⊥$\overrightarrow b$.求證:$\frac{{|{\overrightarrow a}|+|{\overrightarrow b}|}}{{|{\overrightarrow a+\overrightarrow b}|}}$≤$\sqrt{2}$.
(2)命題“若a1,a2∈R,a12+a22=1,則|a1+a2|≤$\sqrt{2}$.”
證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,則f(x)=2x2-2(a1+a2)x+1,
因?yàn)閷?duì)一切實(shí)數(shù)x,恒有f(x)≥0,所以△≤0,從而4(a1+a22-8≤0,所以|a1+a2|≤$\sqrt{2}$.
試將上述命題推廣到n個(gè)實(shí)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若某程序框圖如圖所示,則該程序運(yùn)行后輸出的值等于5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,輸出S的值是( 。
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知x,y滿(mǎn)足條件$\left\{\begin{array}{l}{x-\frac{1}{2}y+1≥0}\\{x+y≤2}\\{x-2y≤2}\end{array}\right.$,若z=mx+y取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)m的值為( 。
A.1或-$\frac{1}{2}$B.1或-2C.-1或-2D.-2或-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案