6.已知函數(shù)f1(x)=$\frac{2x-1}{x+1}$,對于n∈N*,定義fn+1(x)=f1(fn(x)),則f6n+1(x)=$\frac{2x-1}{x+1}$.

分析 函數(shù)對于n∈N*,定義fn+1(x)=f1[fn(x)],分別計算前n項,得到從f1(x)到f6(x),每6個一循環(huán).由此能求出結(jié)果.

解答 解:∵函數(shù)對于n∈N*,定義fn+1(x)=f1[fn(x)],
∴f2(x)=f1[f1(x)]=f1($\frac{2x-1}{x+1}$)=$\frac{2•\frac{2x-1}{x+1}-1}{\frac{2x-1}{x+1}+1}$=$\frac{x-1}{x}$;
f3(x)=f1[f2(x)]=f1($\frac{x-1}{x}$)=$\frac{2•\frac{x-1}{x}-1}{\frac{x-1}{x}+1}$=$\frac{x-2}{2x-1}$;
f4(x)=f1[f3(x)]=f1($\frac{x-2}{2x-1}$)=$\frac{2•\frac{x-2}{2x-1}-1}{\frac{x-2}{2x-1}+1}$=$\frac{1}{1-x}$;
f5(x)=f1[f4(x)]=f1($\frac{1}{1-x}$)=$\frac{2•\frac{1}{1-x}-1}{\frac{1}{1-x}+1}$=$\frac{x+1}{2-x}$;
f6(x)=f1[f5(x)]=f1($\frac{x+1}{2-x}$)=$\frac{2•\frac{x+1}{2-x}-1}{\frac{x+1}{2-x}+1}$=x,
f7(x)=f1[f6(x)]=f1(x)=$\frac{2x-1}{x+1}$=f1(x).
所以從f1(x)到f6(x),每6個一循環(huán).
則f6n+1(x)=$\frac{2x-1}{x+1}$.
故答案為:$\frac{2x-1}{x+1}$.

點評 本題考查函數(shù)的周期性,是基礎(chǔ)題.解題時要認真運算,解題的關(guān)鍵是得到從f1(x)到f6(x),每6個一循環(huán).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,圓O的弦AB,CD相交于點E,過點A作圓O的切線與DC的延長線交于點P,若PA=6,AE=9,BE=2,ED=3,則PC=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別在線段AD、BC上,且EF⊥BC,AD=4,CB=6,AE=2,現(xiàn)將梯形ABCD沿EF折疊,使A到達M位置,B到達N位置,且平面MNFE⊥平面EFCD
(1)判斷直線MD與 NC是否共面,用反證法證明你的結(jié)論
(2)若MC與平面EFCD所成角記為θ,那么tanθ為多少時,二面角M-DC-E的大小是60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知某幾何體的三視圖如圖所示(圖中數(shù)據(jù)單位:cm),則這個幾何體的體積為( 。
A.20cm3B.22cm3C.24cm3D.26cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.正四棱錐S-ABCD底面邊長為2,高為1,E是邊BC的中點,動點P在四棱錐表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為( 。
A.1+$\sqrt{2}$B.$\sqrt{2}$+$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,PA垂直圓O所在的平面,C是圓O上的點,Q為PA的中點,G為△AOC的重心,AB是圓O的直徑,且AB=2AC=2.
(Ⅰ)求證:QG∥平面PBC;
(Ⅱ)求G到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在x=1處取得極值.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈[1,+∞)時,f(x)≥$\frac{m}{1+x}$恒成立,求實數(shù)m的取值范圍;
(Ⅲ)當n∈N*,n≥2時,求證:nf(n)<2+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)y=3x2-x-2在區(qū)間[0,m]上的值域為[-$\frac{25}{12}$,-2],求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)<$\frac{1}{3}$,則f(x)<$\frac{x}{3}+\frac{2}{3}$的解集為(1,+∞).

查看答案和解析>>

同步練習冊答案