6.△ABC的周長等于20,面積是$10\sqrt{3}$,A=60°,則角A的對邊長為( 。
A.5B.6C.7D.8

分析 由題意可得,a+b+c=20,由三角形的面積公式可得S=$\frac{1}{2}$bcsin60°,結(jié)合已知可求bc,然后由余弦定理,a2=b2+c2-2bccos60°可求a.

解答 解:由題意可得,a+b+c=20,則b+c=20-a,
∵S=$\frac{1}{2}$bcsin60°=10$\sqrt{3}$,
∴bc=40,
由余弦定理可得,a2=b2+c2-2bccos60°=(b+c)2-3bc=(20-a)2-120
解方程可得,a=7,
故選:C.

點評 本題主要考查了三角形的面積公式及余弦定理在求解三角形中的應(yīng)用,屬于基礎(chǔ)試題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.利用計算機隨機模擬方法計算y=4x2與y=4所圍成的區(qū)域Ω的面積時,可以先運行以下算法步驟:
第一步:利用計算機產(chǎn)生兩個在[0,1]區(qū)間內(nèi)的均勻隨機數(shù)a,b;
第二步:對隨機數(shù)a,b實施變換:$\left\{\begin{array}{l}{{a}_{1}=2a-1}\\{_{1}=4b}\end{array}\right.$,得到點A(a1,b1);
第三步:判斷點A(a1,b1)的坐標(biāo)是否滿足b1<4${a}_{1}^{2}$;
第四步:累計所產(chǎn)生的點A的個數(shù)m,及滿足b1<4${a}_{1}^{2}$的點A的個數(shù)n;
第五步:判斷m是否小于M(一個設(shè)定的數(shù)).若是,則回到第一步,否則,輸出n并終止算法.
若設(shè)定的M=150,且輸出的n=51,則據(jù)此用隨機模擬方法可以估計出區(qū)域Ω的面積為$\frac{132}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)(x∈R),滿足f(-x)=-f(x),f(3-x)=f(x),則f(435)=( 。
A.0B.3C.-3D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.1+a1+a2+…+an的值是( 。
A.$\frac{1-{a}^{n}}{1-a}$B.$\frac{1-{a}^{n+1}}{1-a}$C.1+n或$\frac{1-{a}^{n}}{1-a}$D.1+n或$\frac{1-{a}^{n+1}}{1-a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=2,BD=$\sqrt{3}$,PD⊥平面ABCD.
(Ⅰ)證明:平面PBC⊥平面PBD;
(Ⅱ)在△PBD中,∠PBD=30°,點E在PB上且BE=3PE,求三棱錐P-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若圓x2+(y-1)2=r2與曲線(x-1)y=1沒有公共點,則半徑r的取值范圍是( 。
A.0<r<$\sqrt{2}$B.0<r<$\frac{\sqrt{11}}{2}$C.0<r<$\sqrt{3}$D.0<r<$\frac{\sqrt{13}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.銀川唐徠回民中學(xué)高二年級某次周考中(滿分100分),理科A班五名同學(xué)的物理成績?nèi)绫硭荆?br />
學(xué)生A1A2A3A4A5
數(shù)學(xué)x8991939597
物理y8789899293
(1)請在如圖直角坐標(biāo)系中作出兩組數(shù)據(jù)散點圖,并判斷正負相關(guān);
(2)依據(jù)散點圖說明物理成績與數(shù)學(xué)成績是否具有線性相關(guān)性,若有,求出線性回歸直線方程;
(3)要從4名數(shù)學(xué)成績高于90分以上的同學(xué)中選出2人參加大學(xué)先修課程的學(xué)習(xí),求所選兩人中至少有一人物理成績高于90分的概率.
以下公式及數(shù)據(jù)供選擇:
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=41880;
$\sum_{i=1}^{5}{{x}_{i}}^{2}$=43285.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知△ABC中,AB=8,A=30°且△ABC的面積為16,則邊AC的長為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱錐S-ABC中,SD⊥平面ABC,D為AB的中點,E為BC的中點,AC=BC.
(1)求證:AC∥平面SDE;
(2)求證:AB⊥SC.

查看答案和解析>>

同步練習(xí)冊答案