16.如圖,在三棱錐S-ABC中,SD⊥平面ABC,D為AB的中點,E為BC的中點,AC=BC.
(1)求證:AC∥平面SDE;
(2)求證:AB⊥SC.

分析 (1)根據(jù)中位線定理得出DE∥AC,故AC∥平面SED;
(2)通過證明AB⊥平面SCD得出AB⊥SC.

解答 證明:(1)∵D為AB的中點,E為BC的中點
∴DE∥AC,
又DE?平面SED,AC?平面SDE,
∴AC∥平面SDE.
(2)連結(jié)CD,
∵SD⊥平面ABC,AB?平面ABC,
∴SD⊥AB,
∵AC=BC,D是AB的中點,
∴CD⊥AB,
又CD?SCD,SD?平面SCD,CD∩SD=D,
∴AB⊥平面SCD,∵SC?平面SCD,
∴AB⊥SC.

點評 本題考查了線面平行的判定,線面垂直的判定與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC的周長等于20,面積是$10\sqrt{3}$,A=60°,則角A的對邊長為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是遞增的等差數(shù)列,a2,a4是方程x2-6x+8=0的根.
(Ⅰ)求{an}的通項公式; 
(Ⅱ)求數(shù)列{an+2n}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)在R上滿足f(-x)+f(x)=0,且x>0時,f(x)=$\frac{1}{2}$(|x+sinα|+|x+2sinα|)+$\frac{3}{2}$sinα(-$\frac{π}{2}$≤α≤$\frac{3π}{2}$)對任意的x∈R,都有f(x-3$\sqrt{3}$)≤f(x)恒成立,則實數(shù)α的取值范圍為( 。
A.[0,π]B.[-$\frac{π}{3}$,$\frac{2π}{3}$]C.[-$\frac{π}{6}$,$\frac{7π}{6}$]D.[-$\frac{π}{3}$,$\frac{4π}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)等差數(shù)列{an}前n項和為Sn,且a5+a6=24,S11=143.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{cn}的前n項和為Tn,且2${\;}^{{a}_{n}-1}$=λTn-2(λ是非零實數(shù)),{cn}是等比數(shù)列嗎?若是,求λ的值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某研究機(jī)構(gòu)對學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù):
x681012
y2356
根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a中的b的值為0.7,則a為( 。
A.1.2B.-1.2C.-2.3D.7.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}中,a10=19,公差d≠0,且a1,a2,a5成等比數(shù)列.
(1)求an;
(2)設(shè)bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示的幾何體P-ABCD中,底面ABCD是梯形,且AD∥BC,點E是邊AD上的一點,AE=BC=AB,AD=3BC,點F是PD的中點,PB⊥AC.
(1)證明:PA=PC;
(2)證明:CF∥平面PBE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若a,b∈(0,+∞)且a+b=3,求$\sqrt{1+a}$+$\sqrt{1+b}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案