分析 求出函數(shù)的導數(shù),通過討論a的范圍,確定函數(shù)的單調(diào)區(qū)間,求出最大值和最小值,得到關(guān)于a的方程,解出即可.
解答 解:y′=f′(x)=3(x+1)(x-1),
∴函數(shù)在在(-∞,-1)遞增,在(-1,1)遞減,在(1,+∞)遞增,
①a=0時,函數(shù)在[0,1]遞減,
函數(shù)的最大值是f(0)=0,函數(shù)的最小值是f(1)=-2,
∴f(0)-f(1)=0-(-2)=2,
故a=0符合題意;
②0<a<1時,1<a+1<2,
∴函數(shù)在[a,1)遞減,在(1,a+1]遞增,
函數(shù)的最小值是f(1)=-2,
由f(a)=f(a+1),
得3a2+3a-2=0,解得:a=$\frac{\sqrt{33}-3}{6}$,
(i)∴0≤a<$\frac{\sqrt{33}-3}{6}$時,f(x)的最大值是f(a),
∴a3-3a-(-2)=2,解得a=0或$\sqrt{3}$或-$\sqrt{3}$,不合題意,舍,
(ii)$\frac{\sqrt{33}-3}{6}$≤a<1時,f(x)的最大值是f(a+1),
∴(a+1)3-3(a+1)-(-2)=2,解得a=$\sqrt{3}$-1,符合題意,
③a≥1時,f(x)在[a,a+1]遞增,
∴f(x)min=f(a),f(x)max=f(a+1),
∴(a+1)3-3(a+1)-a3+3a=2,
解得:a=$\frac{\sqrt{57}-3}{6}$<1,舍,
綜上:a=$\sqrt{3}$-1或0.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應(yīng)用,分類討論思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 事件A與C互斥 | B. | 任何兩個事件均互斥 | ||
C. | 事件B與C互斥 | D. | 任何兩個事件均不互斥 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | i | B. | i2 | C. | i3 | D. | i4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com