【題目】設(shè)函數(shù), .

(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;

(2) 當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) 的取值范圍為;(2) 的取值范圍為.

【解析】試題分析:(1)方程在一個(gè)區(qū)間上有解,可以轉(zhuǎn)化為有解,研究該函數(shù)的單調(diào)性和圖像使得常函數(shù)和該函數(shù)有交點(diǎn)即可。(2)該題可以轉(zhuǎn)化為當(dāng)時(shí), 恒成立,研究這個(gè)函數(shù)的單調(diào)性和最值即可。

(1)方程即為

∴當(dāng)時(shí), 變化情況如下表:

1

3

+

0

-

極大值

, ,

∴當(dāng)時(shí), ,

的取值范圍為

(2)依題意,當(dāng)時(shí), 恒成立

,

,則當(dāng)時(shí), ,

∴函數(shù)上遞增,∵,

存在唯一的零點(diǎn),

且當(dāng)時(shí), ,當(dāng)時(shí), ,

則當(dāng)時(shí), ,當(dāng)時(shí), .

上遞減,在上遞增,從而.

,兩邊取對(duì)數(shù)得

,∴,∴

即實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是一個(gè)非空集合, 是定義在上的一個(gè)運(yùn)算.如果同時(shí)滿足下述四個(gè)條件:

(1)對(duì)于,都有

(2)對(duì)于,都有

(3)對(duì)于,使得;

(4)對(duì)于,使得(注:“”同(iii)中的“”).

則稱關(guān)于運(yùn)算構(gòu)成一個(gè)群.現(xiàn)給出下列集合和運(yùn)算:

是整數(shù)集合, 為加法;②是奇數(shù)集合, 為乘法;③是平面向量集合, 為數(shù)量積運(yùn)算;④是非零復(fù)數(shù)集合, 為乘法. 其中關(guān)于運(yùn)算構(gòu)成群的序號(hào)是___________(將你認(rèn)為正確的序號(hào)都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為 , ,數(shù)列滿足: , , ,數(shù)列的前n項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;

(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=lg(3﹣4x+x2)的定義域?yàn)镸,當(dāng)x∈M時(shí),則f(x)=2x+2﹣3×4x的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確命題的個(gè)數(shù)是(
①若2b=a+c,則a,b,c成等差數(shù)列;
②“a,b,c成等比數(shù)列”的充要條件是“b2=ac”;
③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;
④若| |=| |,則 =
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)定義在R上的奇函數(shù),且在(﹣∞,0)上是增函數(shù),又f(2)=0,則不等式xf(x+1)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 為偶函數(shù)
(1)求實(shí)數(shù)a的值;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[ , ](m>0,n>0)時(shí),若函數(shù)f(x)的值域[2﹣3m,2﹣3n],求實(shí)數(shù)m,n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a>0, 方程 有且僅有兩個(gè)不等實(shí)根,且較大的實(shí)根大于3,則實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案