13.設(shè)集合A={x|x2-2x-8<0},$B=\left\{{x\left|{{2^x}<\frac{1}{2}}\right.}\right\}$,則圖中陰影部分表示的集合為( 。
A.{x|-4<x<-1}B.{x|-1≤x<2}C.{x|-4<x≤-1}D.{x|-1≤x<4}

分析 先觀察Venn圖,由圖可知陰影部分表示的集合為(CRB)∩A,根據(jù)集合的運(yùn)算求解即可.

解答 解:A={x|-2<x<4},B={x|x<-1},
陰影部分為(CRB)∩A={x|-1≤x<4},
故選D.

點評 本小題主要考查Venn圖表達(dá)集合的關(guān)系及運(yùn)算、Venn圖的應(yīng)用等基礎(chǔ)知識,考查數(shù)形結(jié)合思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2<16},B={x|x<m},若A∩B=A,則實數(shù)m的取值范圍是( 。
A.[-4,+∞)B.[4,+∞)C.(-∞,-4]D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=xcosx,有下列4個結(jié)論:
①函數(shù)f(x)的圖象關(guān)于y軸對稱;
②存在常數(shù)T>0,對任意的實數(shù)x,恒有f(x+T)=f(x)成立;
③對于任意給定的正數(shù)M,都存在實數(shù)x0,使得|f(x0)|≥M;
④函數(shù)f(x)的圖象上存在無數(shù)個點,使得該函數(shù)在這些點處的切線與x軸平行.
其中,所有正確結(jié)論的序號為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1,
(1)求f(x)的解析式;
(2)方程f(x)=$\frac{1}{2}$x+1+k 在(-1,1)上有實根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x-alnx,g(x)=lnx+$\frac{a}{x}$(a∈R).
(1)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若在[1,e]上存在一點x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.用數(shù)學(xué)歸納法證明:$1+2+3+…+n=\frac{1}{2}\;n\;(n+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在拋物線y=2-x2上,哪一點的切線處于下述位置?
(1)與x軸平行;
(2)平行于第一象限角的平分線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知銳角△ABC中的內(nèi)角A,B,C的對邊分別為a,b,c,定義向量$\overrightarrow m$=(2sinB,$\sqrt{3}$),$\overrightarrow n$=(${2{{cos}^2}\frac{B}{2}$-1,cos2B),且$\overrightarrow m⊥\overrightarrow n$.
(1)求角B的大;
(2)求函數(shù)f(x)=sin2xcosB-cos2xsinB的單調(diào)遞增區(qū)間;
(3)如果b=4,求△ABC的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x2-2)的定義域是[-1,1],則函數(shù)f(3x+2)的定義域為[-$\frac{4}{3}$,-1].

查看答案和解析>>

同步練習(xí)冊答案