9.已知正項數(shù)列{an}的前n項和為Sn,對任意n∈N+,有2Sn=an2+an
(1)求數(shù)列{an}的通項公式;
(2)令bn=$\frac{1}{{{a_n}\sqrt{{a_{n+1}}}+{a_{n+1}}\sqrt{a_n}}}$,設(shè){bn}的前n項和為Tn,求證:$\frac{{2-\sqrt{2}}}{2}≤{T_n}$<1.

分析 (1)根據(jù)數(shù)列的遞推公式即可求出數(shù)列{an}的通項公式,
(2)先化簡數(shù)列bn,根據(jù)裂項求和和放縮法即可證明.

解答 解:(1)∵$2{S_n}=a_n^2+{a_n}$,∴當n=1時,$2{a_1}=a_1^2+{a_1}$,解得a1=1;
當n≥2時,$2{S_{n-1}}=a_{n-1}^2+{a_{n-1}}$,$2{a_n}=a_n^2+{a_n}-(a_{n-1}^2+{a_{n-1}})$,
化為(an+an-1)(an-an-1-1)=0,∵?n∈N*有an>0,
∴an-an-1=1.
∴數(shù)列{an}是等差數(shù)列,首項為1,公差為1.
∴an=1+(n-1)=n.
∴an=n.
(2)${b_n}=\frac{1}{{{a_n}\sqrt{{a_n}+1}+{a_{n+1}}\sqrt{a_n}}}=\frac{1}{{n\sqrt{n+1}+(n+1)\sqrt{n}}}=\frac{{\sqrt{n}}}{n}-\frac{{\sqrt{n+1}}}{n+1}$,
∴{bn}的前n項和為${T_n}=(1-\frac{{\sqrt{2}}}{2})+(\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{3}}}{3})+…+(\frac{{\sqrt{n}}}{n}-\frac{{\sqrt{n+1}}}{n+1})=1-\frac{{\sqrt{n+1}}}{n+1}$,
由Tn隨著n增大在增大,得$\frac{{2-\sqrt{2}}}{2}≤{T_n}<1$.

點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則它表面積是( 。
A.24+$\sqrt{5}$B.24-πC.24+($\sqrt{5}$-1)πD.20+($\sqrt{5}$-1)π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,根據(jù)以上程序,可求得f(-1)+f(2)=( 。
A.-1B.0C.$\frac{17}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=sin(2x+φ)(其中0<φ<π)滿足f(-x)=f(x),則( 。
A.f(x)在$(0,\frac{π}{2})$單調(diào)遞減B.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞減
C.f(x)在$(0,\frac{π}{2})$單調(diào)遞增D.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)求中心在原點,焦點在x軸上,焦距等于4,且經(jīng)過點P$(3,-2\sqrt{6})$的橢圓方程;
(2)過橢圓x2+2y2=2的左焦點引一條傾斜角為45°的直線與橢圓交A、B兩點,橢圓的中心為O,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,z1=2+ai,z1z2=-4,則a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓的兩個焦點的坐標分別是(0,-3)和(0,3),且橢圓經(jīng)過點  (0,4),求
(1)該橢圓的標準方程;
(2)求過點(3,0)且斜率為$\frac{4}{5}$的直線被C所截線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知曲線C上的動點P到兩定點O(0,0),A(3,0)的距離之比為$\frac{1}{2}$.
(1)求曲線C的方程;
(2)若直線l經(jīng)過點(0,-2),且直線l交曲線C于A,B兩點.以AB為直徑的圓能否過坐標原點?若能求出直線l的方程,若不能說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點($\sqrt{2}$,$\frac{\sqrt{2}}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓E的方程;
(2)設(shè)O為坐標原點,若點A是橢圓上運動,且點A不在y軸上,點B在直線y=t上,且OA⊥OB,是否存在有序?qū)崝?shù)對(t,r)使得直線AB與圓O:x2+y2=r2總相切,若存在,求出所有滿足題意的有序?qū)崝?shù)對(t,r);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案