【題目】如圖所示,等腰梯形ABCD中,AB∥CD,AD=AB=BC=1,CD=2,E為CD中點,AE與BD交于點O,將△ADE沿AE折起,使點D到達點P的位置(P平面ABCE).
(Ⅰ)證明:平面POB⊥平面ABCE;
(Ⅱ)若直線PB與平面ABCE所成的角為,求二面角A-PE-C的余弦值.
【答案】(Ⅰ)見解析;(Ⅱ)
【解析】
(Ⅰ)證明OP⊥AE,OB⊥AE,得到AE⊥平面POB,即可證明平面POB⊥平面ABCE;
(Ⅱ)以O為原點,OE為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,求出平面平面PCE的一個法向量,平面PAE的一個法向量,利用空間向量的數量積求解二面角A﹣P﹣EC的余弦值.
(Ⅰ)證明:在等腰梯形ABCD中,易知△DAE為等邊三角形,所以OD⊥AE,OB⊥AE,
即在△PAE中,OP⊥AE,
∴AE⊥平面POB,AE平面ABCE,所以平面POB⊥平面ABCE;
(Ⅱ)在平面POB內作PQ⊥OB=Q,∴PQ⊥平面ABCE.
∴直線PB與平面ABCE夾角為,又∵OP=OB,∴OP⊥OB,O、Q兩點重合,
即OP⊥平面ABCE,以O為原點,OE為x軸,OB為y軸,OP為z軸,
建立空間直角坐標系,由題意得,各點坐標為,,,
∴,,
設平面PCE的一個法向量為,
則,即,設,
則y=-1,z=1,∴,
由題意得平面PAE的一個法向量,
設二面角A-P-EC為α,.
即二面角A-P-EC為α的余弦值為.
科目:高中數學 來源: 題型:
【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機調查了40名群眾,并將他們隨機分成A,B兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評分,B組群眾給第二階段的創(chuàng)文工作評分,根據兩組群眾的評分繪制了如圖莖葉圖:
根據莖葉圖比較群眾對兩個階段創(chuàng)文工作滿意度評分的平均值及集中程度不要求計算出具體值,給出結論即可;
根據群眾的評分將滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
由頻率估計概率,判斷該市開展創(chuàng)文工作以來哪個階段的民眾滿意率高?說明理由.
完成下面的列聯表,并根據列聯表判斷是否有的把握認為民眾對兩個階段創(chuàng)文工作的滿意度存在差異?
低于70分 | 不低于70分 | |
第一階段 | ||
第二階段 |
附:
k |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體中,點是棱的中點,點 在棱上,且(為實數).
(1)求二面角的余弦值;
(2)當時,求直線與平面所成角的正弦值的大;
(3)求證:直線與直線不可能垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解某產品的獲利情況,將今年1至7月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數據進行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
純利潤 | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
該公司先從這7組數據中選取5組數據求純利潤關于銷售收入的線性回歸方程,再用剩下的2組數據進行檢驗.假設選取的是2月至6月的數據.
(1)求純利潤關于銷售收入的線性回歸方程(精確到0.01);
(2)若由線性回歸方程得到的估計數據與檢驗數據的誤差均不超過0.1萬元,則認為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?
參考公式:,,,;參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家統(tǒng)計局統(tǒng)計了我國近10年(2009年2018年)的GDP(GDP是國民經濟核算的核心指標,也是衡量一個國家或地區(qū)總體經濟狀況的重要指標)增速的情況,并繪制了下面的折線統(tǒng)計圖.
根據該折線統(tǒng)計圖,下面說法錯誤的是
A. 這10年中有3年的GDP增速在9.00%以上
B. 從2010年開始GDP的增速逐年下滑
C. 這10年GDP仍保持6.5%以上的中高速增長
D. 2013年—2018年GDP的增速相對于2009年—2012年,波動性較小
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在五棱錐中,側面底面,是邊長為2的正三角形,四邊形為正方形,,且,是的重心,是正方形的中心.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃投資開發(fā)一種新能源產品,預計能獲得10萬元1000萬元的收益.現準備制定一個對開發(fā)科研小組的獎勵方案:獎金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎金總數不超過9萬元,同時獎金總數不超過收益的.
(Ⅰ)若建立獎勵方案函數模型,試確定這個函數的定義域、值域和的范圍;
(Ⅱ)現有兩個獎勵函數模型:①;②.試分析這兩個函數模型是否符合公司的要求?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現被測男生的身高全部在到之間,將測量結果按如下方式分成六組:第1組,第2組,…,第6組,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.
(1)若學校要從中選1名男生擔任足球隊長,求被選取的男生恰好在第5組或第6組的概率;
(2)試估計該校高一年級全體男生身高的平均數(同一組中的數據用該組區(qū)間的中點值代表)與中位數;
(3)現在從第5與第6組男生中選取兩名同學擔任守門員,求選取的兩人中最多有1名男生來自第5組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com