【題目】如圖,在平面直角坐標系中,單位圓上存在兩點,滿足均與軸垂直,設(shè)與的面積之和記為.
若,求的值;
若對任意的,存在,使得成立,且實數(shù)使得數(shù)列為遞增數(shù)列,其中求實數(shù)的取值范圍.
【答案】(1)或(2)
【解析】
(1)運用三角形的面積公式和三角函數(shù)的和差公式,以及特殊角的函數(shù)值,可得所求角;
(2)由正弦函數(shù)的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數(shù)列的單調(diào)性,討論的范圍,即可得到的取值范圍.
依題意,可得
,
由,得,
又,所以.
由得
因為,所以,所以,
當時,,
(當且僅當時,等號成立)
又因為對任意,存在,使得成立,
所以,即,解得,
因為數(shù)列為遞增數(shù)列,且,
所以,從而,
又,所以,
從而,
又,
①當時,,從而,
此時與同號,
又,即,
②當時,由于趨向于正無窮大時,與趨向于相等,從而與趨向于相等,即存在正整數(shù),使,從而,
此時與異號,與數(shù)列為遞增數(shù)列矛盾,
綜上,實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點A的極坐標為 ,直線l的極坐標方程為 ,且點A在直線l上.
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數(shù)方程為 ,試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)求函數(shù) 的單調(diào)區(qū)間;
(3)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A,B,C是橢圓W: 上的三個點,O是坐標原點.
(1)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,互不相同的點A1 , A2 , …,An , …和B1 , B2 , …,Bn , …分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面積均相等,設(shè)OAn=an , 若a1=1,a2=2,則數(shù)列{an}的通項公式是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知函數(shù)的圖像與直線相切,其中是自然對數(shù)的底數(shù).
(1)求實數(shù)的值;
(2)設(shè)函數(shù)在區(qū)間內(nèi)有兩個極值點.
①求實數(shù)的取值范圍;
②設(shè)函數(shù)的極大值和極小值的差為,求實數(shù)的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:.
(Ⅰ)求過點的圓的切線方程;
(Ⅱ)設(shè)圓與軸相交于,兩點,點為圓上異于,的任意一點,直線,分別與直線交于,兩點.
(。┊旤c的坐標為時,求以為直徑的圓的圓心坐標及半徑;
(ⅱ)當點在圓上運動時,以為直徑的圓被軸截得的弦長是否為定值?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)判斷在上的增減性,并證明你的結(jié)論
(2)解關(guān)于的不等式
(3)若在上恒成立,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com