【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)求函數(shù) 的單調(diào)區(qū)間;

(3)若恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) 函數(shù)的極大值為,無(wú)極小值;(2) 當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是增函數(shù),在是減函數(shù);(3) 實(shí)數(shù)額取值范圍為.

【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),利用函數(shù)的單調(diào)性,求解函數(shù)的極值;(2)求出函數(shù)f(x)的定義域,函數(shù)的導(dǎo)數(shù),通過當(dāng)a≤0時(shí),當(dāng)a>0時(shí),分別求解函數(shù)的單調(diào)區(qū)間即可;(3)根據(jù)前兩問得到的極大值即為的最大值即可.

詳解:

(1)當(dāng)時(shí),.

,列表

1

+

0

-

2

∴函數(shù)的極大值為,無(wú)極小值;

(2).

①當(dāng)時(shí),恒成立,故是增函數(shù);

②當(dāng)時(shí),對(duì)是增函數(shù),

對(duì),是減函數(shù).

綜上,當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是增函數(shù),在是減函數(shù).

(3)恒成立,則.

由(2)可知,的極大值即為的最大值,

.

∴實(shí)數(shù)額取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),的部分圖象如圖所示,且,則( )

A. 6 B. 4 C. -4 D. -6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于AB兩點(diǎn),已知AB的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為

(1)求,的值;

(2)若,求函數(shù)的單調(diào)區(qū)間;

(3)設(shè)函數(shù),且在區(qū)間內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣經(jīng)濟(jì)最近十年穩(wěn)定發(fā)展,經(jīng)濟(jì)總量逐年上升,下表是給出的部分統(tǒng)計(jì)數(shù)據(jù):

序號(hào)

2

3

4

5

年份

2008

2010

2012

2014

2016

經(jīng)濟(jì)總量(億元)

236

246

257

275

286

(1)如上表所示,記序號(hào)為,請(qǐng)直接寫出的關(guān)系式;

(2)利用所給數(shù)據(jù)求經(jīng)濟(jì)總量與年份之間的回歸直線方程;

(3)利用(2)中所求出的直線方程預(yù)測(cè)該縣2018年的經(jīng)濟(jì)總量.

附:對(duì)于一組數(shù)據(jù),

其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點(diǎn),滿足均與軸垂直,設(shè)的面積之和記為

,求的值;

若對(duì)任意的,存在,使得成立,且實(shí)數(shù)使得數(shù)列為遞增數(shù)列,其中求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax﹣(1+a2)x2 , 其中a>0,區(qū)間I={x|f(x)>0}
(1)求I的長(zhǎng)度(注:區(qū)間(a,β)的長(zhǎng)度定義為β﹣α);
(2)給定常數(shù)k∈(0,1),當(dāng)1﹣k≤a≤1+k時(shí),求I長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

同步練習(xí)冊(cè)答案