18.已知圓C的圓心在直線2x+y-1=0上,且經(jīng)過(guò)原點(diǎn)和點(diǎn)(-1,-5),則圓C的方程為(x-2)2+(y+3)2=13.

分析 設(shè)圓心C(b,1-2b),利用圓的半徑相等列出方程,求得b的值,可得圓心坐標(biāo)和半徑,即可得到圓的方程.

解答 解:由題意設(shè)圓的圓心C(b,1-2b),再根據(jù)圓過(guò)原點(diǎn)和點(diǎn)(-1,-5),
可得C到原點(diǎn)的距離等于C到點(diǎn)(-1,-5)的距離,
即b2+(1-2b)2=(b+1)2+(1-2b+5)2,
解得b=2.
可得圓心C(2,-3),半徑=$\sqrt{13}$,
則圓C的方程為:(x-2)2+(y+3)2=13.
故答案為:(x-2)2+(y+3)2=13.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程的求法,準(zhǔn)確利用已知條件列出方程是解題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若曲線f(x)=$\frac{aelnx}{x}$在點(diǎn)(1,f(1))處的切線過(guò)點(diǎn)(0,-2e),則函數(shù)y=f(x)的極值為( 。
A.1B.2C.3D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$sin(\frac{π}{4}+α)$=$\frac{1}{3}$,則sin2α的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,四邊形ABCD為菱形,EB⊥平面ABCD,EF∥BD,EF=$\frac{1}{2}$BD.
(Ⅰ)求證:DF∥平面AEC;
(Ⅱ)求證:平面AEF⊥平面AFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={-4,2,-1,5},B={x|y=$\sqrt{x+2}$},則A∩B中元素的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知(2+x2)${(ax+\frac{1}{a})^6}$展開(kāi)式中含x4項(xiàng)的系數(shù)為45,則正實(shí)數(shù)a的值為$\frac{\sqrt{2}}{2}$或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知F1,F(xiàn)2分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),若點(diǎn)P是以F1F2為直徑的圓與C右支的一個(gè)交點(diǎn),PF1交C于另一點(diǎn)Q,且|PQ|=2|QF1|,則C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.
(Ⅰ)證明:AP∥平面BED;
(Ⅱ)證明:平面APC⊥平面BED;
(Ⅲ)若BC=PC=2,∠ABC=60°,求異面直線AP與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0,c=$\sqrt{{a}^{2}+^{2}}$)中,2a=b+c,則該雙曲線的漸近線的斜率等于( 。
A.±$\frac{4}{3}$B.±$\frac{3}{5}$C.±$\frac{3}{4}$D.±$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案