7.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點(diǎn)E是PC的中點(diǎn),且平面PBC⊥平面ABCD.
(Ⅰ)證明:AP∥平面BED;
(Ⅱ)證明:平面APC⊥平面BED;
(Ⅲ)若BC=PC=2,∠ABC=60°,求異面直線AP與BC所成角的余弦值.

分析 (Ⅰ)設(shè)AC∩BD=O,ABCD是平行四邊形,故O為BD的中點(diǎn),連結(jié)OE,則AP∥OE,由此能證明AP∥平面BED,
(Ⅱ)由已知推導(dǎo)出PC⊥BD,AC⊥BD,從而BD⊥平面APC,由此能證明平面APC⊥平面BED.
(Ⅲ)由BC∥AD,知∠PAD為異面直線AP與BC所成的角,由此能求出異面直線AP與BC所成角的余弦值.

解答 (本小題滿分13分)
證明:(Ⅰ)設(shè)AC∩BD=O,ABCD是平行四邊形,故O為BD的中點(diǎn),連結(jié)OE,
∵點(diǎn)E是PC的中點(diǎn),∴AP∥OE,
OE?平面BED,AP?平面BED,
∴AP∥平面BED
(Ⅱ)∵平面PBC⊥平面ABCD,∠PCB=90°,
故PC⊥平面ABCD,又BD?平面ABCD,∴PC⊥BD,
而底面ABCD是菱形,故AC⊥BD,
又AC∩PC=C,∴BD⊥平面APC,
∵BD?平面BED,
∴平面APC⊥平面BED.
解:(Ⅲ)由(Ⅰ)知BC∥AD,
故∠PAD為異面直線AP與BC所成的角,
由已知BC=PC=2,∠ABC=60°,底面ABCD是菱形
故AB=BC=AC=PC=2,
∴在Rt△DPC中,PC=DC=2,故DP=2$\sqrt{2}$,
取BC中點(diǎn)H,則AH⊥BC,AH⊥平面PBC,
在Rt△AHP中,PH=$\sqrt{5}$,AH=$\sqrt{3}$,故AP=2$\sqrt{2}$,
∴AP=2$\sqrt{2}$,在△APD中,cos$∠PAD=\frac{\frac{1}{2}AD}{AP}$=$\frac{\sqrt{2}}{4}$.
∴異面直線AP與BC所成角的余弦值為$\frac{\sqrt{2}}{4}$.

點(diǎn)評 本題考查線面平行、面面垂直的證明,考查異面直線所成角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={0,1,2},B={x|x(x-2)<0},則A∩B( 。
A.{0,1,2}B.{1,2}C.{0,1}D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓C的圓心在直線2x+y-1=0上,且經(jīng)過原點(diǎn)和點(diǎn)(-1,-5),則圓C的方程為(x-2)2+(y+3)2=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y-2≥0\\ 2x+y-2≤0\\ y+4≥0.\end{array}\right.$,則目標(biāo)函數(shù)z=4x+3y的最大值為( 。
A.0B.$\frac{10}{3}$C.12D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$cos2x,x∈R,將函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位長度,得到函數(shù)g(x)的圖象,則g(x)在區(qū)間$[-\frac{π}{6},\frac{π}{3}]$上的最小值為(  )
A.0B.$-\frac{{\sqrt{3}}}{2}$C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,角A,B,C的對邊分別是a,b,c,已知b=2,且cos2B+cosB+cos(A-C)=1,則a+2c的最小值時(shí),最大邊所對角的余弦值是-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某地區(qū)交管部門為了對該地區(qū)駕駛員的某項(xiàng)考試成績進(jìn)行分析,隨機(jī)抽取了15分到45分之間的1000名學(xué)員的成績,并根據(jù)這1000名駕駛員的成績畫出樣本的頻率分布直方圖(如圖),則成績在[30,35)內(nèi)的駕駛員人數(shù)共有( 。
A.60B.180C.300D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{3}$,橢圓左右兩個(gè)焦點(diǎn)F1,F(xiàn)2在直線x-y+2=0上的同側(cè),且直線上的動(dòng)點(diǎn)到兩個(gè)焦點(diǎn)的距離之和的最小值為$\sqrt{10}$,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷下列各題中直線的位置關(guān)系,若相交,求出交點(diǎn)坐標(biāo).
(1)l1:2x+y+3=0,l2:x-2y-1=0;
(2)l1:x+y+2=0,l2:2x+2y+3=0;
(3)l1:x-y+1=0,l2:2x-2y+2=0.

查看答案和解析>>

同步練習(xí)冊答案