2.A={2,a},B={2,a2-2},如果A=B,則a=-1.

分析 根據(jù)集合相等可得元素相等即可

解答 解:∵A={2,a},B={2,a2-2},A=B,
∴a=a2-2,
解得:a=-1或a=2,
當(dāng)a=2時(shí),集合A不滿足集合元素的互異性,故舍去
故答案為:-1

點(diǎn)評(píng) 本題主要考查集合相等的判斷,數(shù)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點(diǎn)A(2,3),B(4,1),△ABC是以AB為底邊的等腰三角形,點(diǎn)C在直線l:x-2y+2=0上.
(1)求點(diǎn)C的坐標(biāo)及S△ABC;
(2)若直線l'過點(diǎn)C且與x軸、y軸正半軸分別交于P、Q兩點(diǎn),則:
①求S△POQ的最小值及此時(shí)l'的方程;
②求|PC|•|QC|的最小值及此時(shí)l'的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.曲線$\sqrt{2}$x2+y2=1與直線x+y-1=0交于P,Q兩點(diǎn),M為PQ中點(diǎn),則kOM=(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若i為虛數(shù)單位,且復(fù)數(shù)z滿足(1+i)z=3-i,則復(fù)數(shù)z的模是( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(-8)${\;}^{\frac{1}{3}}}$•$\frac{{{{(\sqrt{a{b^{-1}}})}^3}}}{{{{(0.2)}^{-2}}{{({a^3}{b^{-3}})}^{\frac{1}{2}}}}}$=$-\frac{2}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在四棱錐P-ABCD中,底面ABCD是梯形,AB⊥BC,BC⊥CD,點(diǎn)E是線段AB上的一點(diǎn),DE⊥平面PAB,△ADE,為等腰直角三角形,DE=1,PE=2,AB=4,PA=$\sqrt{5}$.
(1)求證:PE⊥平面ABCD;
(2)若點(diǎn)Q是側(cè)棱PC上的一點(diǎn),且四面體BCDQ與四面體ADEP的體積相等,求二面角C-BD-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若某直線的斜率k∈(-∞,$\sqrt{3}$],則該直線的傾斜角α的取值范圍是( 。
A.$[0,\frac{π}{3}]$B.$[\frac{π}{3},\frac{π}{2}]$C.$[0,\frac{π}{3}]∪(\frac{π}{2},π)$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{2})x,x≥2}\\{{a}^{x}-4,x<2}\end{array}\right.$滿足對(duì)任意的實(shí)數(shù)x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則實(shí)數(shù)a的取值范圍為( 。
A.(1,2]B.($\frac{13}{4}$,2]C.(1,3]D.($\frac{13}{4}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了得到函數(shù)y=sin(3x+$\frac{π}{6}$)的圖象,只需要把函數(shù)y=sin(x+$\frac{π}{6}$)的圖象上的所有點(diǎn)( 。
A.橫坐標(biāo)伸長(zhǎng)為原來的3倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長(zhǎng)為原來的3倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮短為原來的$\frac{1}{3}$倍,橫坐標(biāo)不變

查看答案和解析>>

同步練習(xí)冊(cè)答案