已知在同一直角坐標系中,函數(shù)f(x)=m2x2+4mx和函數(shù)g(x)=x2+4x-3的圖象與直線x=a分別交于M、N兩點,若對于任意實數(shù)a,點M始終比點N高,求m的取值范圍.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:由題意得不等式,根據(jù)二次函數(shù)的性質(zhì),從而求出m的范圍.
解答: 解:顯然m≠0,
由題意得:m2a2+4ma>a2+4a-3,
∴(m2-1)a2+(4m-4)a+3>對于任意實數(shù)a恒成立,
∴m2-1≠0
∴△=(4m-4)2-12(m2-1)<0,解得:-1<m<1,
∴m的范圍是:(-1,1).
點評:本題考查了二次函數(shù)的性質(zhì),函數(shù)恒成立問題,是一道基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列關(guān)于函數(shù)f(x)=(x+1)|x|的單調(diào)性的敘述中,正確的是( 。
A、f(x)在定義域上單調(diào)遞增
B、f(x)在定義域上單調(diào)遞減
C、f(x)在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù)
D、f(x)在(-
1
2
,0)上是減函數(shù),在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當a>0時,函數(shù)f(x)=(x2-ax)ex的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列A:a1,a2,a3,…,an(0≤a1<a2<a3<…<an,n≥3,n∈N*)具有性質(zhì)P:對任意的i,j(1≤i≤j≤n,i,j∈N*),aj+ai與aj-ai兩數(shù)中至少有一個是數(shù)列A中的項,現(xiàn)下列命題正確的是:
 
.(寫出所有正確答案的序號)
①數(shù)列A:0,1,3與數(shù)列B:0,2,4,6都具有性質(zhì)P;
②a1=0;
③2(a1+a2+a3+…+an)=nan;
④當n=5時,a1,a2,a3,a4,a5成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=4lnx-x2的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義域在R上的增函數(shù),且不等式f(-ax)<f(2-a)對于任意x∈[0,1]都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式|x|<1成立時,不等式1<x-a<4也成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+(2a+1)x+1-3a,其中,a≠0.若g(x)=
f(x)
a
,是否存在實數(shù)a,使得g[g(x)]=0只有一個實數(shù)根?若存在,請求出a的值或者a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=a(a>0),數(shù)列{bn}滿足:bn=anan+2(n∈N*
(1)若數(shù)列{an}是等差數(shù)列,且b3=45,求a的值及數(shù)列{an}通項公式;
(2)若數(shù)列{an}的等比數(shù)列,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案