若非零函數(shù)對任意實(shí)數(shù)均有,且當(dāng)時(shí)
(1)求證:;
(2)求證:為R上的減函數(shù);
(3)當(dāng)時(shí), 對恒有,求實(shí)數(shù)的取值范圍.
(1)證法一:即又[來源:學(xué)&科&網(wǎng)]
當(dāng)時(shí),
則
故對于恒有
證法二: 為非零函數(shù)
(2)證明:令且
有, 又 即
故 又
故為R上的減函數(shù)
(3)實(shí)數(shù)的取值范圍為
解析試題分析:(1)由題意可取代入等式,得出關(guān)于的方程,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/01/b/5xsqv1.png" style="vertical-align:middle;" />為非零函數(shù),故,再令代入等式,可證,從而證明當(dāng)時(shí),有;(2)著眼于減函數(shù)的定義,利用條件當(dāng)時(shí),有,根據(jù)等式,令,,可得,從而可證該函數(shù)為減函數(shù).(3)根據(jù),由條件可求得,將替換不等式中的,再根據(jù)函數(shù)的單調(diào)性可得,結(jié)合的范圍,從而得解.
試題解析:(1)證法一:即又
當(dāng)時(shí),
則
故對于恒有 4分
證法二: 為非零函數(shù)
(2)令且
有, 又 即
故 又
故為R上的減函數(shù) 8分
(3)故, 10分
則原不等式可變形為
依題意有 對恒成立
或或
故實(shí)數(shù)的取值范圍為 14分
考點(diǎn):1.函數(shù)的概念;2.函數(shù)的單調(diào)性;3.二次函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
湖南省環(huán)保研究所對長沙市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻x的關(guān)系為,其中a是與氣象有關(guān)的參數(shù),且,若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作.
(Ⅰ)令,求t的取值范圍;
(Ⅱ)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的最小值為,且關(guān)于的一元二次不等式的解集為。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)其中,求函數(shù)在時(shí)的最大值;
(Ⅲ)若(為實(shí)數(shù)),對任意,總存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1f/5/k7j2i1.png" style="vertical-align:middle;" />的奇函數(shù).
(1)求的值;
(2)若,且在上的最小值為,求的值.
(3)若,試討論函數(shù)在上零點(diǎn)的個(gè)數(shù)情況。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,判斷函數(shù)在上的單調(diào)性并用定義證明;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象分別與軸、軸交于兩點(diǎn),且,函數(shù),當(dāng)滿足不等式,時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)計(jì)算的值,據(jù)此提出一個(gè)猜想,并予以證明;
(2)證明:除點(diǎn)(2,2)外,函數(shù)的圖像均在直線的下方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com