8.觀察下列式子:
$\begin{array}{l}1+\frac{1}{2^2}<1+\frac{1}{2}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}<1+\frac{2}{3}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<1+\frac{3}{4}\end{array}$
根據(jù)以上式子可以猜想:1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}$<1+$\frac{n-1}{n}$(n≥2).

分析 根據(jù)規(guī)律,不等式的左邊是n+1個(gè)自然數(shù)倒數(shù)的平方的和,右邊分母是以2為首項(xiàng),1為公差的等差數(shù)列,分子是以3為首項(xiàng),2為公差的等差數(shù)列,由此可得結(jié)論.

解答 解:根據(jù)規(guī)律,
不等式的左邊是n+1個(gè)自然數(shù)倒數(shù)的平方的和,
右邊分母是以2為首項(xiàng),1為公差的等差數(shù)列,
分子是以3為首項(xiàng),2為公差的等差數(shù)列,
所以第n個(gè)不等式應(yīng)該為1+$\frac{1}{{2}^{2}}$+$\frac{{1}^{\;}}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1+$\frac{n-1}{n}$.
故答案為:1+$\frac{n-1}{n}$.

點(diǎn)評 本題考查歸納推理,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=alnx+$\frac{1}{2}$x2(a>0),若對任意兩個(gè)不等的正實(shí)數(shù)x1,x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥2恒成立,則a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在極坐標(biāo)系中,圓C1:ρ=2cosθ與圓C2:ρ=2sinθ相交于 A,B兩點(diǎn),則|AB|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:ρsin2θ-6cosθ=0,直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),l與C交于P1,P2兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程及l(fā)的普通方程;
(2)已知P0(3,0),求||P0P1|-|P0P2||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某冷飲店為了解氣溫對其營業(yè)額的影響,隨機(jī)記錄了該店1月份銷售淡季中的日營業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表所示:
x367910
y1210887
(Ⅰ)判定y與x的是正相關(guān)還是負(fù)相關(guān);并求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)若該地1月份某天的最低氣溫為0℃,預(yù)測該店當(dāng)日的營業(yè)額
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=2.
(Ⅰ) 若點(diǎn)M的直角坐標(biāo)為(2,$\sqrt{3}$),直線l與曲線C1交于A、B兩點(diǎn),求|MA|+|MB|的值.
(Ⅱ)設(shè)曲線C1經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=\frac{{\sqrt{3}}}{2}x\\ y'=\frac{1}{2}y\end{array}\right.$得到曲線C2,求曲線C2的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下列關(guān)于空間向量的命題中,正確的有①③④.
①若向量$\overrightarrow{a}$,$\overrightarrow$與空間任意向量都不能構(gòu)成基底,則$\overrightarrow{a}$∥$\overrightarrow$;
②若非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$則有$\overrightarrow{a}$∥$\overrightarrow{c}$;
③若$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$是空間的一組基底,且$\overrightarrow{OD}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,則A,B,C,D四點(diǎn)共面;
④若向量$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$,是空間一組基底,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$也是空間的一組基底.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.{an}是各項(xiàng)均不為0的等差數(shù)列,{bn}是等比數(shù)列,若a1-a${\;}_{7}^{2}$+a13=0,且b7=a7,則b3b11=( 。
A.16B.8C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定積分${∫}_{0}^{1}$exdx=( 。
A.1+eB.eC.e-1D.1-e

查看答案和解析>>

同步練習(xí)冊答案