4.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x-1,x≤1\\ lnx,x>1\end{array}$,則f(f($\sqrt{e}$))=( 。
A.1B.-1C.0D.e

分析 由f($\sqrt{e}$)=ln$\sqrt{e}$=$\frac{1}{2}$,得f(f($\sqrt{e}$))=f($\frac{1}{2}$),由此能求出結果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}2x-1,x≤1\\ lnx,x>1\end{array}$,
∴f($\sqrt{e}$)=ln$\sqrt{e}$=$\frac{1}{2}$,
∴f(f($\sqrt{e}$))=f($\frac{1}{2}$)=$2×\frac{1}{2}-1=0$.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.$\sqrt{\frac{1}{8}}•\root{3}{{2\sqrt{2}}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=|x-2|的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知奇函數(shù)f(x)在(-∞,0)上單調遞減,且f(2)=0,則不等式xf(x-1)>0的解集是(  )
A.(-3,-1)B.(-3,1)∪(2,+∞)C.(-3,0)∪(3,+∞)D.(-1,0)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在三角形ABC中,則tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{A}{2}$tan$\frac{C}{2}$的值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設命題P:關于x的不等式${a^{{x^2}-ax-2{a^2}}}$>1(a>0且a≠1)的解集為{x|-a<x<2a};命題Q:f(x)=lg(ax2-x+a)的值域為R.如果P且Q為真,則實數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,棱長為a,E為棱CC1上的動點.
(1)求異面直線BD與A1E所成的角;
(2)確定E點的位置,使平面A1BD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知角α的終邊經過點P(4,-3),
(1)求sinα,cosα,tanα的值;
(2)求$\frac{sin(\frac{π}{2}-α)}{sin(π+α)}$•$\frac{tan(π-α)}{cos(α+π)}$的值.

查看答案和解析>>

同步練習冊答案