19.在三角形ABC中,則tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{A}{2}$tan$\frac{C}{2}$的值是1.

分析 由條件利用誘導(dǎo)公式、兩角和的正切公式,求得要求式子的值.

解答 解:三角形ABC中,則tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{A}{2}$tan$\frac{C}{2}$=tan$\frac{A}{2}$(tan$\frac{B}{2}$+tan$\frac{C}{2}$)+tan$\frac{B}{2}$tan$\frac{C}{2}$
=tan$\frac{A}{2}$•tan($\frac{B}{2}$+$\frac{C}{2}$)(1-tan$\frac{B}{2}$tan$\frac{C}{2}$)+tan$\frac{B}{2}$tan$\frac{C}{2}$ 
=tan$\frac{A}{2}$•cot$\frac{A}{2}$•(1-tan$\frac{B}{2}$tan$\frac{C}{2}$)+tan$\frac{B}{2}$tan$\frac{C}{2}$=1,
故答案為:1.

點(diǎn)評 本題主要考查誘導(dǎo)公式、兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A(1,1,1),B(-3,-3,-3),點(diǎn)P在x軸上,且|PA|=|PB|,則點(diǎn)P的坐標(biāo)為(  )
A.(-3,0,0)B.(-4,0,0)C.(0,0,-3)D.(0,-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x-2-x+2的一個零點(diǎn)所在區(qū)間為( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)向量$\overrightarrow{a}$=(4,m),$\overrightarrow$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+2$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知在等比數(shù)列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$,則a4=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x-1,x≤1\\ lnx,x>1\end{array}$,則f(f($\sqrt{e}$))=( 。
A.1B.-1C.0D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義在R上的奇函數(shù)f(x)在(0,+∞)上是增函數(shù)且f(-2)=0,則xf(x)<0的解集為(  )
A.(-∞,-2)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是定義在R上的偶函數(shù),且T=4,當(dāng)x∈(0,2)時,f(x)=log2(3x+1),則f(2015)=( 。
A.4B.2C.-2D.log27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=tan $\frac{x}{2}$是( 。
A.周期為π的奇函數(shù)B.周期為2π的奇函數(shù)
C.周期為4π的奇函數(shù)D.周期為4π的偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案