14.已知復(fù)數(shù)$\frac{2-ai}{i}=1+bi$,其中a,b∈R,i是虛數(shù)單位,則|a+bi|=( 。
A.-1-3iB.$\sqrt{5}$C.10D.$\sqrt{10}$

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)相等的條件求得a,b的值,則答案可求.

解答 解:∵$\frac{2-ai}{i}=\frac{(2-ai)(-i)}{-{i}^{2}}=-a-2i$,
∴由$\frac{2-ai}{i}=1+bi$,得-a-2i=1+bi,
∴$\left\{\begin{array}{l}{-a=1}\\{-2=b}\end{array}\right.$,則a=-1,b=-2.
∴|a+bi|=|-2-i|=$\sqrt{5}$.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)相等的條件,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=13,若f(-1)=2,則f(2013)=$\frac{13}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$滿足條件:(1)焦點(diǎn)為F1(-5,0),F(xiàn)2(5,0);(2)離心率為$\frac{5}{3}$,求得雙曲線C的方程為f(x,y)=0.若去掉條件(2),另加一個(gè)條件求得雙曲線C的方程仍為f(x,y)=0,則下列四個(gè)條件中,①雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$上的任意點(diǎn)P都滿足||PF1|-|PF2||=6;②雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的虛軸長(zhǎng)為4;③雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的一個(gè)頂點(diǎn)與拋物線y2=6x的焦點(diǎn)重合;④雙曲線$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的漸近線方程為3x+4y=0.符合添加的條件共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.f(x)是定義在(-2,2)上的減函數(shù),若f (m-1)>f(2m-1),則實(shí)數(shù)m的取值范圍是(  )
A.(0,+∞)B.(0,$\frac{3}{2}$)C.(-1,3)D.($-\frac{1}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.我國(guó)南宋著名數(shù)學(xué)家秦九韶在他的著作《數(shù)書(shū)九章》卷五“田域類”里有一個(gè)題目:“問(wèn)有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知為田幾何.”這道題講的是有一個(gè)三角形沙田,三邊分別為13里,14里,15里,假設(shè)1里按500米計(jì)算,則該沙田的面積為21平萬(wàn)千米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若實(shí)數(shù)x,y滿足2|x|-1≤y≤x+1,則z=4x-y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x-a|+2|x+1|.
(1)當(dāng)a=3時(shí),求不等式f(x)≥6的解集;
(2)若f(x)≥4對(duì)于任意x∈R都恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合A={x|x2+x-2≤0},B={x|0≤x≤4},則A∩B=(  )
A.[-2,4]B.[0,1]C.[-2,0]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(4-a)x,x<1}\\{{a}^{x},x≥1}\end{array}\right.$滿足對(duì)任意的兩個(gè)不等實(shí)數(shù)x1,x2都有(x1-x2)[f(x1)-f(x2)]>0成立,則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(-∞,4)C.(1,4)D.[2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案