1.已知等比數(shù)列{an}共有10項(xiàng),其中奇數(shù)項(xiàng)之積為2,偶數(shù)項(xiàng)之積為64,則其公比是( 。
A.$\frac{3}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a1a3a5a7a9=2,a2a4a6a8a10=64,
∴q5=32,解得q=2.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.y=1,y=$\frac{x}{x}$B.y=$\frac{{x}^{2}-x}{x}$與y=x-1C.y=x,y=$\root{3}{{x}^{3}}$D.y=|x|,y=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,在三棱臺(tái)ABC-A1B1C1中,截去三棱錐A1-ABC,則剩余部分是( 。
A.三棱錐B.四棱錐C.三棱柱D.五棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a=2${\;}^{\frac{1}{3}}$,b=log3$\frac{2}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{2}a{x^2}$+2x-lnx.
(1)若a=-$\frac{3}{4}$,判斷函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=-$\frac{1}{2}$時(shí),關(guān)于x的方程f(x)=$\frac{1}{2}$x-b在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下列函數(shù)為奇函數(shù)的是②③④
①f(x)=x2-|x|+1 x∈[-1,4];
②f(x)=ln$\frac{2-x}{2+x}$;
③f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$。╝>0,且a≠1);
④f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x>0}\\{0,x=0}\\{-{x}^{2}-2,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知長(zhǎng)方體ABCD-A1B1C1D1的外接球O的體積為$\frac{32π}{3}$,其中BB1=2,則三棱錐O-ABC的體積的最大值為(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:對(duì)任意x∈R,有cosx≤1,則( 。
A.¬p:存在x∈R,使cosx>1B.¬p:對(duì)任意x∈R,有cosx>1
C.¬p:存在x∈R,使cosx≥1D.¬p:對(duì)任意x∈R,有cosx≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0)f(x)=Asin(ωx+φ)的部分圖象如圖所示,下列說(shuō)法正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)$({-\frac{5π}{12},0})$對(duì)稱(chēng)
C.將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位得到的函數(shù)圖象關(guān)于y軸對(duì)稱(chēng)
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是$[{kπ+\frac{7π}{12},kπ+\frac{13π}{12}}],k∈Z$

查看答案和解析>>

同步練習(xí)冊(cè)答案