Processing math: 19%
10.已知命題p:對任意x∈R,有cosx≤1,則( �。�
A.¬p:存在x∈R,使cosx>1B.¬p:對任意x∈R,有cosx>1
C.¬p:存在x∈R,使cosx≥1D.¬p:對任意x∈R,有cosx≥1

分析 利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,
所以,命題p:對任意x∈R,有cosx≤1,則¬p:存在x∈R,使cosx>1.
故選:A.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.在底面為正三角形的三棱柱ABC-A1B1C1中,AB=2,AA1⊥平面ABC,E,F(xiàn)分別為BB1,AC的中點.
(1)求證:BF∥平面A1EC;
(2)若AA1=22,求二面角C-EA1-A的大�。�
(2)若AA1=22,求三棱錐C1-A1EC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知等比數(shù)列{an}共有10項,其中奇數(shù)項之積為2,偶數(shù)項之積為64,則其公比是( �。�
A.32B.2C.2D.22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若tanα=3tan\frac{π}{7},則\frac{{cos({α-\frac{5π}{14}})}}{{sin({α-\frac{π}{7}})}}=( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知cos\frac{4π}{5}cos\frac{7π}{15}-sin\frac{9π}{5}sin\frac{7π}{15}=cos(x+\frac{π}{2})cosx+\frac{2}{3},則sin2x等于( �。�
A.\frac{1}{3}B.-\frac{1}{3}C.\frac{1}{12}D.-\frac{1}{12}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知拋物線y=-4x2,則它的準線方程為( �。�
A.y=\frac{1}{16}B.y=-\frac{1}{16}C.x=2D.x=-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列幾何體的截面圖不可能是四邊形的是( �。�
A.圓柱B.圓錐C.圓臺D.棱臺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,f(\frac{x}{3})=\frac{1}{2}f(x),且當0≤x1<x2≤1時,有f(x1)≤f(x2),則f(\frac{1}{2016})=( �。�
A.\frac{1}{32}B.\frac{1}{64}C.\frac{1}{128}D.\frac{1}{2016}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知直線y=x+a與曲線y=\sqrt{2-{x^2}}的兩個不同的交點,則實數(shù)a的取值范圍是( �。�
A.(-2,2)B.(0,2)C.({\sqrt{2},2})D.[{\sqrt{2},2})

查看答案和解析>>

同步練習冊答案